FedPFT: Federated Proxy Fine-Tuning of Foundation Models

FedPFT: Federated Proxy Fine-Tuning of Foundation Models

Zhaopeng Peng, Xiaoliang Fan, Yufan Chen, Zheng Wang, Shirui Pan, Chenglu Wen, Ruisheng Zhang, Cheng Wang

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
Main Track. Pages 4806-4814. https://doi.org/10.24963/ijcai.2024/531

Adapting Foundation Models (FMs) for down- stream tasks through Federated Learning (FL) emerges a promising strategy for protecting data privacy and valuable FMs. Existing methods fine- tune FM by allocating sub-FM to clients in FL, however, leading to suboptimal performance due to insufficient tuning and inevitable error accumula- tions of gradients. In this paper, we propose Feder- ated Proxy Fine-Tuning (FedPFT), a novel method enhancing FMs adaptation in downstream tasks through FL by two key modules. First, the sub-FM construction module employs a layer-wise com- pression approach, facilitating comprehensive FM fine-tuning across all layers by emphasizing those crucial neurons. Second, the sub-FM alignment module conducts a two-step distillations—layer- level and neuron-level—before and during FL fine- tuning respectively, to reduce error of gradient by accurately aligning sub-FM with FM under theo- retical guarantees. Experimental results on seven commonly used datasets (i.e., four text and three vi- sion) demonstrate the superiority of FedPFT. Our code is available at https://github.com/pzp-dzd/FedPFT.
Keywords:
Machine Learning: ML: Federated learning
Machine Learning: ML: Trustworthy machine learning
Multidisciplinary Topics and Applications: MTA: Security and privacy