Label Distribution Learning from Logical Label

Label Distribution Learning from Logical Label

Yuheng Jia, Jiawei Tang, Jiahao Jiang

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
Main Track. Pages 4228-4236. https://doi.org/10.24963/ijcai.2024/467

Label distribution learning (LDL) is an effective method to predict the label description degree (a.k.a. label distribution) of a sample. However, annotating label distribution (LD) for training samples is extremely costly. So recent studies often first use label enhancement (LE) to generate the estimated label distribution from the logical label and then apply external LDL algorithms on the recovered label distribution to predict the label distribution for unseen samples. But this step-wise manner overlooks the possible connections between LE and LDL. Moreover, the existing LE approaches may assign some description degrees to invalid labels. To solve the above problems, we propose a novel method to learn an LDL model directly from the logical label, which unifies LE and LDL into a joint model, and avoids the drawbacks of the previous LE methods. We also give the generalization error bound of our method and theoretically prove that directly learning an LDL model from the logical labels is feasible. Extensive experiments on various datasets prove that the proposed approach can construct a reliable LDL model directly from the logical label, and produce more accurate label distribution than the state-of-the-art LE methods. The code and the supplementary file can be found in https://github.com/seutjw/DLDL.
Keywords:
Machine Learning: ML: Multi-label learning
Constraint Satisfaction and Optimization: CSO: Constraint optimization problems
Machine Learning: ML: Optimization