Two-Sided Wasserstein Procrustes Analysis

Two-Sided Wasserstein Procrustes Analysis

Kun Jin, Chaoyue Liu, Cathy Xia

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
Main Track. Pages 3515-3521. https://doi.org/10.24963/ijcai.2021/484

Learning correspondence between sets of objects is a key component in many machine learning tasks.Recently, optimal Transport (OT) has been successfully applied to such correspondence problems and it is appealing as a fully unsupervised approach. However, OT requires pairwise instances be directly comparable in a common metric space. This limits its applicability when feature spaces are of different dimensions or not directly comparable. In addition, OT only focuses on pairwise correspondence without sensing global transformations. To address these challenges, we propose a new method to jointly learn the optimal coupling between twosets, and the optimal transformations (e.g. rotation, projection and scaling) of each set based on a two-sided Wassertein Procrustes analysis (TWP). Since the joint problem is a non-convex optimization problem, we present a reformulation that renders the problem component-wise convex. We then propose a novel algorithm to solve the problem harnessing a Gauss–Seidel method. We further present competitive results of TWP on various applicationscompared with state-of-the-art methods.
Keywords:
Machine Learning Applications: Applications of Unsupervised Learning
Machine Learning: Transfer, Adaptation, Multi-task Learning
Machine Learning Applications: Bio/Medicine