Guaranteeing Maximin Shares: Some Agents Left Behind
Guaranteeing Maximin Shares: Some Agents Left Behind
Hadi Hosseini, Andrew Searns
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
Main Track. Pages 238-244.
https://doi.org/10.24963/ijcai.2021/34
The maximin share (MMS) guarantee is a desirable fairness notion for allocating indivisible goods. While MMS allocations do not always exist, several approximation techniques have been developed to ensure that all agents receive a fraction of their maximin share. We focus on an alternative approximation notion, based on the population of agents, that seeks to guarantee MMS for a fraction of agents. We show that no optimal approximation algorithm can satisfy more than a constant number of agents, and discuss the existence and computation of MMS for all but one agent and its relation to approximate MMS guarantees. We then prove the existence of allocations that guarantee MMS for 2/3 of agents, and devise a polynomial time algorithm that achieves this bound for up to nine agents. A key implication of our result is the existence of allocations that guarantee the value that an agent receives by partitioning the goods into 3n/2 bundles, improving the best known guarantee when goods are partitioned into 2n-2 bundles. Finally, we provide empirical experiments using synthetic data.
Keywords:
Agent-based and Multi-agent Systems: Computational Social Choice
Agent-based and Multi-agent Systems: Economic Paradigms, Auctions and Market-Based Systems
Agent-based and Multi-agent Systems: Resource Allocation