One-Shot Affordance Detection
One-Shot Affordance Detection
Hongchen Luo, Wei Zhai, Jing Zhang, Yang Cao, Dacheng Tao
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
Main Track. Pages 895-901.
https://doi.org/10.24963/ijcai.2021/124
Affordance detection refers to identifying the potential action possibilities of objects in an image, which is an important ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we consider the challenging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection (OS-AD) network that firstly estimates the purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OS-AD can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a Purpose-driven Affordance Dataset (PAD) by collecting and labeling 4k images from 31 affordance and 72 object categories. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality. The benchmark suite is at ProjectPage.
Keywords:
Computer Vision: Perception
Machine Learning: Deep Learning
Robotics: Vision and Perception