CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP
CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP
Libo Qin, Minheng Ni, Yue Zhang, Wanxiang Che
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
Main track. Pages 3853-3860.
https://doi.org/10.24963/ijcai.2020/533
Multi-lingual contextualized embeddings, such as multilingual-BERT (mBERT), have
shown success in a variety of zero-shot cross-lingual tasks.
However, these models are limited by having inconsistent contextualized representations of subwords across different languages.
Existing work addresses this issue by bilingual projection and fine-tuning technique.
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT, which encourages model to align representations from source and multiple target languages once by mixing their context information.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
Experimental results on five tasks with 19 languages show that our method leads to significantly improved performances for all the tasks compared with mBERT.
Keywords:
Natural Language Processing: Natural Language Processing