Semi-supervised User Profiling with Heterogeneous Graph Attention Networks

Semi-supervised User Profiling with Heterogeneous Graph Attention Networks

Weijian Chen, Yulong Gu, Zhaochun Ren, Xiangnan He, Hongtao Xie, Tong Guo, Dawei Yin, Yongdong Zhang

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Main track. Pages 2116-2122. https://doi.org/10.24963/ijcai.2019/293

Aiming to represent user characteristics and personal interests, the task of user profiling is playing an increasingly important role for many real-world applications, e.g., e-commerce and social networks platforms. By exploiting the data like texts and user behaviors, most existing solutions address user profiling as a classification task, where each user is formulated as an individual data instance. Nevertheless, a user's profile is not only reflected from her/his affiliated data, but also can be inferred from other users, e.g., the users that have similar co-purchase behaviors in e-commerce, the friends in social networks, etc. In this paper, we approach user profiling in a semi-supervised manner, developing a generic solution based on heterogeneous graph learning. On the graph, nodes represent the entities of interest (e.g., users, items, attributes of items, etc.), and edges represent the interactions between entities. Our heterogeneous graph attention networks (HGAT) method learns the representation for each entity by accounting for the graph structure, and exploits the attention mechanism to discriminate the importance of each neighbor entity. Through such a learning scheme, HGAT can leverage both unsupervised information and limited labels of users to build the predictor. Extensive experiments on a real-world e-commerce dataset verify the effectiveness and rationality of our HGAT for user profiling.
Keywords:
Machine Learning: Classification
Humans and AI: Personalization and User Modeling