Augmenting Transfer Learning with Semantic Reasoning
Augmenting Transfer Learning with Semantic Reasoning
Freddy Lécué, Jiaoyan Chen, Jeff Z. Pan, Huajun Chen
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Main track. Pages 1779-1785.
https://doi.org/10.24963/ijcai.2019/246
Transfer learning aims at building robust prediction models by transferring knowledge gained from one problem to another. In the semantic Web, learning tasks are enhanced with semantic representations. We exploit their semantics to augment transfer learning by dealing with when to transfer with semantic measurements and what to transfer with semantic embeddings. We further present a general framework that integrates the above measurements and embeddings with existing transfer learning algorithms for higher performance. It has demonstrated to be robust in two real-world applications: bus delay forecasting and air quality forecasting.
Keywords:
Knowledge Representation and Reasoning: Description Logics and Ontologies
Machine Learning: Transfer, Adaptation, Multi-task Learning
Machine Learning: Knowledge-based Learning