Face Photo-Sketch Synthesis via Knowledge Transfer

Face Photo-Sketch Synthesis via Knowledge Transfer

Mingrui Zhu, Nannan Wang, Xinbo Gao, Jie Li, Zhifeng Li

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Main track. Pages 1048-1054. https://doi.org/10.24963/ijcai.2019/147

Despite deep neural networks have demonstrated strong power in face photo-sketch synthesis task, their performance, however, are still limited by the lack of training data (photo-sketch pairs). Knowledge Transfer (KT), which aims at training a smaller and fast student network with the information learned from a larger and accurate teacher network, has attracted much attention recently due to its superior performance in the acceleration and compression of deep neural networks. This work has brought us great inspiration that we can train a relatively small student network on very few training data by transferring knowledge from a larger teacher model trained on enough training data for other tasks. Therefore, we propose a novel knowledge transfer framework to synthesize face photos from face sketches or synthesize face sketches from face photos. Particularly, we utilize two teacher networks trained on large amount of data in related task to learn the knowledge of face photos and face sketches separately and transfer them to two student networks simultaneously. In addition, the two student networks, one for photo ? sketch task and the other for sketch ? photo task, can transfer their knowledge mutually. With the proposed method, we can train our model which has superior performance using a small set of photo-sketch pairs. We validate the effectiveness of our method across several datasets. Quantitative and qualitative evaluations illustrate that our model outperforms other state-of-the-art methods in generating face sketches (or photos) with high visual quality and recognition ability.
Keywords:
Computer Vision: Biometrics, Face and Gesture Recognition
Computer Vision: Computer Vision