Failure-Scenario Maker for Rule-Based Agent using Multi-agent Adversarial Reinforcement Learning and its Application to Autonomous Driving
Failure-Scenario Maker for Rule-Based Agent using Multi-agent Adversarial Reinforcement Learning and its Application to Autonomous Driving
Akifumi Wachi
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
AI for Improving Human Well-being. Pages 6006-6012.
https://doi.org/10.24963/ijcai.2019/832
We examine the problem of adversarial reinforcement learning for multi-agent domains including a rule-based agent. Rule-based algorithms are required in safety-critical applications for them to work properly in a wide range of situations. Hence, every effort is made to find failure scenarios during the development phase. However, as the software becomes complicated, finding failure cases becomes difficult. Especially in multi-agent domains, such as autonomous driving environments, it is much harder to find useful failure scenarios that help us improve the algorithm. We propose a method for efficiently finding failure scenarios; this method trains the adversarial agents using multi-agent reinforcement learning such that the tested rule-based agent fails. We demonstrate the effectiveness of our proposed method using a simple environment and autonomous driving simulator.
Keywords:
Special Track on AI for Improving Human-Well Being: AI safety (Special Track on AI and Human Wellbeing)
Special Track on AI for Improving Human-Well Being: AI applications for Improving Human-Well Being (Special Track on AI and Human Wellbeing)