Hierarchical Expertise Level Modeling for User Specific Contrastive Explanations

Hierarchical Expertise Level Modeling for User Specific Contrastive Explanations

Sarath Sreedharan, Siddharth Srivastava, Subbarao Kambhampati

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
Main track. Pages 4829-4836. https://doi.org/10.24963/ijcai.2018/671

There is a growing interest within the AI research community in developing autonomous systems capable of explaining their behavior to users. However, the problem of computing explanations for users of different levels of expertise has received little research attention. We propose an approach for addressing this problem by representing the user's understanding of the task as an abstraction of the domain model that the planner uses. We present algorithms for generating minimal explanations in cases where this abstract human model is not known. We reduce the problem of generating an explanation to a search over the space of abstract models and show that while the complete problem is NP-hard, a greedy algorithm can provide good approximations of the optimal solution. We also empirically show that our approach can efficiently compute explanations for a variety of problems.
Keywords:
Planning and Scheduling: Robot Planning
Humans and AI: Human-AI Collaboration