Scalable Initial State Interdiction for Factored MDPs
Scalable Initial State Interdiction for Factored MDPs
Swetasudha Panda, Yevgeniy Vorobeychik
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
Main track. Pages 4801-4807.
https://doi.org/10.24963/ijcai.2018/667
We propose a novel Stackelberg game model of MDP interdiction in which the defender modifies the initial state of the planner, who then responds
by computing an optimal policy starting with that state. We first develop a novel approach for MDP interdiction in factored state space that allows the defender to modify the initial state. The resulting approach can be computationally expensive for large factored MDPs. To address this, we develop several interdiction algorithms that leverage variations of reinforcement learning using both linear and non-linear function approximation. Finally, we extend the interdiction framework to consider a Bayesian interdiction problem in which the interdictor is uncertain about some of the planner's initial state features.
Extensive experiments demonstrate the effectiveness of our approaches.
Keywords:
Planning and Scheduling: Markov Decisions Processes
Planning and Scheduling: Planning under Uncertainty
Multidisciplinary Topics and Applications: Security and Privacy
Agent-based and Multi-agent Systems: Algorithmic Game Theory
Machine Learning Applications: Applications of Reinforcement Learning