Binary Coding based Label Distribution Learning
Binary Coding based Label Distribution Learning
Ke Wang, Xin Geng
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
Main track. Pages 2783-2789.
https://doi.org/10.24963/ijcai.2018/386
Label Distribution Learning (LDL) is a novel learning paradigm in machine learning, which assumes that an instance is labeled by a distribution over all labels, rather than labeled by a logic label or some logic labels. Thus, LDL can model the description degree of all possible labels to an instance. Although many LDL methods have been put forward to deal with different application tasks, most existing methods suffer from the scalability issue. In this paper, a scalable LDL framework named Binary Coding based Label Distribution Learning (BC-LDL) is proposed for large-scale LDL. The proposed framework includes two parts, i.e., binary coding and label distribution generation. In the binary coding part, the learning objective is to generate the optimal binary codes for the instances. We integrate the label distribution information of the instances into a binary coding procedure, leading to high-quality binary codes. In the label distribution generation part, given an instance, the k nearest training instances in the Hamming space are searched and the mean of the label distributions of all the neighboring instances is calculated as the predicted label distribution. Experiments on five benchmark datasets validate the superiority of BC-LDL over several state-of-the-art LDL methods.
Keywords:
Machine Learning: Machine Learning
Machine Learning Applications: Big data ; Scalability