Value Iteration Networks

Value Iteration Networks

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, Pieter Abbeel

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
Best Sister Conferences. Pages 4949-4953. https://doi.org/10.24963/ijcai.2017/700

We introduce the value iteration network (VIN): a fully differentiable neural network with a `planning module' embedded within. VINs can learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning, such as policies for reinforcement learning. Key to our approach is a novel differentiable approximation of the value-iteration algorithm, which can be represented as a convolutional neural network, and trained end-to-end using standard backpropagation.We evaluate VIN based policies on discrete and continuous path-planning domains, and on a natural-language based search task. We show that by learning an explicit planning computation, VIN policies generalize better to new, unseen domains.This paper is a significantly abridged and IJCAI audience targeted version of the original NIPS 2016 paper with the same title, available here: https://arxiv.org/abs/1602.02867
Keywords:
Artificial Intelligence: automated planning
Artificial Intelligence: artificial intelligence