Learning to Hallucinate Face Images via Component Generation and Enhancement
Learning to Hallucinate Face Images via Component Generation and Enhancement
Yibing Song, Jiawei Zhang, Shengfeng He, Linchao Bao, Qingxiong Yang
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
Main track. Pages 4537-4543.
https://doi.org/10.24963/ijcai.2017/633
We propose a two-stage method for face hallucination. First, we generate facial components of the input image using CNNs. These components represent the basic facial structures. Second, we synthesize fine-grained facial structures from high resolution training images. The details of these structures are transferred into facial components for enhancement. Therefore, we generate facial components to approximate ground truth global appearance in the first stage and enhance them through recovering details in the second stage. The experiments demonstrate that our method performs favorably against state-of-the-art methods.
Keywords:
Robotics and Vision: Manipulation
Robotics and Vision: Vision and Perception
Robotics and Vision: Robotics and Vision