Abstract

On Trivial Solution and Scale Transfer Problems in Graph Regularized NMF
On Trivial Solution and Scale Transfer Problems in Graph Regularized NMF
Quanquan Gu, Chris Ding, Jiawei Han
Combining graph regularization with nonnegative matrix (tri-)factorization (NMF) has shown great performance improvement compared with traditional nonnegative matrix (tri-)factorization models due to its ability to utilize the geometric structure of the documents and words. In this paper, we show that these models are not well-defined and suffering from trivial solution and scale transfer problems. In order to solve these common problems, we propose two models for graph regularized nonnegative matrix (tri-)factorization, which can be applied for document clustering and co-clustering respectively. In the proposed models, a Normalized Cut-like constraint is imposed on the cluster assignment matrix to make the optimization problem well-defined. We derive a multiplicative updating algorithm for the proposed models, and prove its convergence. Experiments of clustering and co-clustering on benchmark text data sets demonstratethat the proposed models outperform the originalmodels as well as many other state-of-the-art clustering methods.