Abstract

 

Using Reasoning Patterns to Helps Humans Solve Complex Games

We propose a novel method for helping humans make good decisions in complex games, for which common equilibrium solutions may be too difficult to compute or not relevant. Our method leverages and augments humans' natural use of arguments in the decision making process. We believe that, if computers were capable of generating similar arguments from the mathematical description of a game, and presented those to a human decision maker, the synergies would result in better performance overall. The theory of reasoning patterns naturally lends itself to such a use. We use reasoning patterns to derive localized evaluation functions for each decision in a game, then present their output to humans. We have implemented this approach in a repeated principal-agent game, and used it to generate advice given to subjects. Experimental results show that humans who received advice performed better than those who did not.

Dimitrios Antos, Avi Pfeffer