Abstract

Planning for Temporally Extended Goals as Propositional Satisfiability

Planning for Temporally Extended Goals as Propositional Satisfiability

Robert Mattmüller, Jussi Rintanen

Planning for temporally extended goals (TEGs) expressed as formulae of Linear-time Temporal Logic (LTL) is a proper generalization of classical planning, not only allowing to specify properties of a goal state but of the whole plan execution. Additionally, LTL formulae can be used to represent domain-specific control knowledge to speed up planning. In this paper we extend SAT-based planning for LTL goals (akin to bounded LTL model-checking in verification) to partially ordered plans, thus significantly increasing planning efficiency compared to purely sequential SAT planning. We consider a very relaxed notion of partial ordering and show how planning for LTL goals (without the next-time operator) can be translated into a SAT problem and solved very efficiently. The results extend the practical applicability of SAT-based planning to a wider class of planning problems. In addition, they could be applied to solving problems in bounded LTL model-checking more efficiently.