
RLOP: A Framework for Reinforcement Learning, Optimization and Planning
Algorithms

Song Zhang
EII Inc., Tokyo, Japan

zhangsong0618@gmail.com

Abstract

Reinforcement learning, optimization, and plan-
ning/search are interconnected domains in artifi-
cial intelligence. Algorithms within these do-
mains share many similarities. They comple-
ment each other in solving complex decision-
making problems, and also offer opportunities
for cross-disciplinary integration. However, con-
ducting research on algorithms across these do-
mains typically requires learning the specialized
libraries. These libraries often couple algo-
rithms with domain-specific problem classes, mak-
ing it difficult to conduct cross-disciplinary re-
searches. In order to solve this problem, we de-
veloped a generic and lightweight framework for
reinforcement learning, optimization, and plan-
ning/search algorithms (RLOP). It implements
only the core logic of algorithms, abstracting
away domain-specific details by defining inter-
face functions, which enables flexible customiza-
tion and efficient integration across different do-
mains. The framework has been open-sourced at
https://github.com/songzhg/RLOP.

1 Introduction
In artificial intelligence, reinforcement learning (RL), opti-
mization (Opt), and planning/search have relatively indepen-
dent research background and application scope. Reinforce-
ment learning studies how an agent ought to take actions in
a dynamic environment in order to maximize the cumulative
reward. Optimization spans a wider range of fields includ-
ing artificial intelligence and operations research. Its prob-
lem is to optimize an optimization function subject to certain
constraints [Ryan, 2003]. Planning can be divided into state-
space planning and plan-space planning. State-space plan-
ning is viewed primarily as a search through the state space
for an optimal policy or an optimal path to a goal. Plan-space
planning is instead a search through the space of plans [Sutton
and Barto, 2018].

There are similarities and overlaps between reinforcement
learning, optimization, and planning/search. For example, re-
inforcement learning and planning/search are all based on

looking ahead to future events, computing backed up val-
ues, and then using it to update an approximate value func-
tion [Sutton and Barto, 2018]. Similarly, optimization algo-
rithms such as the simplex and the branch and bound meth-
ods can also be considered as planning/search methods within
the solution space. These algorithms can complement each
other in solving complex decision-making problems. Specif-
ically, optimization methods are efficient in solving prob-
lems with well-defined objectives and constraints. Planning
extends this by considering sequences of actions over time.
Reinforcement learning is well-suited for complex environ-
ments with long-term planning. In recent years, several
cross-disciplinary studies have found success, including Alp-
haZero [Silver et al., 2017], which combines the Monte Carlo
Tree Search (MCTS) with reinforcement learning to master
board games, and the use of reinforcement learning or MCTS
to solve combinatorial optimization problems [Bello et al.,
2016] [Zhang et al., 2022]. The integration between these
domains is a promising direction for future researches.

Currently a generic framework of reinforcement learning,
optimization, and planning/search is not very common. Con-
ducting research on algorithms across these domains typ-
ically requires learning the specialized algorithm libraries
separately. These libraries often implement algorithms with
domain-specific problem classes. For example, Stable Base-
lines3 [Raffin et al., 2019], a reinforcement learning library,
uses a well-defined environment class as the input of algo-
rithms. It simplifies the applications of algorithms, but makes
customization across domains difficult, as the environment
class dose not efficiently fit the algorithms from other do-
mains. To solve this problem, we developed a generic and
lightweight framework for reinforcement learning, optimiza-
tion, and planning/search algorithms (RLOP). It implements
only the core logic of algorithms, abstracting away domain-
specific details by defining interface functions, rather than di-
rectly accessing information from problem-specific classes.
This design enables flexible customization and efficient inte-
gration across different domains.

The rest of the paper is organized as follows. In section
2, we introduce the design principle of RLOP. In section 3,
we compare RLOP with other related libraries. We show
some examples of using RLOP to solve benchmark problems
in section 4, and conclude in section 5.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8851

https://github.com/songzhg/RLOP


class MCTS {
// The number of child states
virtual int NumChildStates() const = 0;

// Check if a node is fully expanded
virtual bool IsExpanded(const Node&) const = 0;

// Revert the current state
virtual void RevertState() = 0;

// Make a step on the current state
virtual bool Step(Int child_i) = 0;

// Get the reward of the current state
virtual double Reward() = 0;

};

Figure 1: Examples of interface functions of MCTS. Users imple-
ment these functions based on the problem to solve.

2 Framework Design
RLOP is a generic and lightweight framework for reinforce-
ment learning, optimization, and planning/search algorithms,
aimed at simplifying studying, comparing and integrating al-
gorithms across domains. It is developed in C++ to en-
sure fast or memory-efficient implementation of algorithms.
And it also includes implementations of benchmark prob-
lems, such as Snake game, Connect4 [Dabas et al., 2022],
vehicle routing problem (VRP) and multi-armed bandit.

RLOP uses libtorch [Paszke et al., 2019] for construct-
ing deep learning models. And it provides a C++ interface
for gymnasium [Brockman et al., 2016] by using pybind11
[Jakob et al., 2017], making it possible to run reinforcement
learning algorithms on python-based gym environments.

2.1 Features
There are two major features of the design:

• Simple: RLOP implements only the core logic of the
algorithm, with other improvements being added in an
extensible manner. Simple choices are preferred to more
complex ones.

• Domain-independent: RLOP abstracts away domain-
specific details of algorithms by defining interface func-
tions. For each new problem, users are required to
implement these functions manually. This design de-
couples algorithms from domain-specific problem class
(such as the ”Env” class in reinforcement learning). Fig-
ure 1 shows the example of interface functions of Monte
Carlo Tree Search (MCTS).

2.2 Implemented Algorithms
The algorithms currently implemented in RLOP are listed as
follows (also in Table 1):

1. Deep Q Network (DQN) [Mnih et al., 2013]: an off-
policy reinforcement learning algorithm making use of
replay buffer and target network to stabilize the learning
process.

2. Proximal Policy Optimization (PPO) [Schulman et al.,
2017]: an on-policy reinforcement learning algorithm

Algorithm Type
DQN RL
PPO RL
SAC RL
MCTS/PUCT Search
Root-parallel MCTS/PUCT Search
Alpha-beta Search
Alpha-beta with TT Search
Tabu Search Opt
SA Opt

Table 1: Algorithm List

combining ideas from A2C (having multiple workers)
and TRPO (using a trust region for actor).

3. Soft Actor Critic (SAC) [Haarnoja et al., 2018]: an off-
policy reinforcement learning algorithm maximizing a
trade-off between expected return and entropy of policy
with a stochastic actor.

4. Monte Carlo Tree Search (MCTS): a search algo-
rithm using random sampling for deterministic prob-
lems. PUCT is a variant of MCTS taking prior prob-
ability into consideration. The root-parallel version of
MCTS and PUCT are also implemented.

5. Alpha-beta Search (Alpha-beta) [Knuth and Moore,
1975]: a search algorithm for a game tree pruning away
branches that cannot possibly affect the final decision.
Transposition table (TT) is used to record positions that
have already been explored to avoid repeat exploration.

6. Tabu Search [Glover, 1990]: a meta-heuristic search
used to solve optimization problems, which can escape
the local optimum by banning visited solutions or move-
ments.

7. Simulated Annealing (SA) [Bertsimas and Tsitsiklis,
1993]: a probability based meta-heuristic for approxi-
mating the global optimum of a given function.

3 Related Work
In this section, we introduce two widely recognized libraries
related to reinforcement learning, optimization, and plan-
ning/search. The algorithms implemented in these libraries
are listed in Table 2.

Stable Baselines3 (SB3) is a set of reliable implementa-
tions of reinforcement learning algorithms in PyTorch. It en-
capsulates complex implementations internally, allowing be-
ginners to experiment without being buried in implementa-
tion details, but makes hacking into the algorithms and con-
ducting cross-domain research more difficult.

OpenSpiel [Lanctot et al., 2019] is a collection of environ-
ments and algorithms for research in general reinforcement
learning and search/planning in games. It offers a rich set of
algorithm implementations including reinforcement learning,
multi-agent reinforcement learning (MARL), tabular-based
methods, optimization and planning/search. Unfortunately,
the library lacks support for domains other than games.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8852



Algorithm RLOP SB3 OpenSpiel
A2C ◦ ◦
DQN ◦ ◦ ◦
PPO ◦ ◦ ◦
SAC ◦ ◦
DDPG ◦
HER ◦
TD3 ◦
MCTS/PUCT ◦ ◦
Alpha-beta ◦ ◦
Alpha-beta with TT ◦
Tabu Search ◦
SA ◦
Tabular methods ◦
MARL methods ◦
Opt in games ◦

Table 2: Comparison between libraries (◦: included)

4 Case Study
In this section, we show examples of using RLOP to solve
benchmark problems and illustrate the results. Because
of the page limit, we only investigate two problems pro-
vided in RLOP, including lunar lander and vehicle rout-
ing problem (VRP). For more examples, please refer to
https://github.com/songzhg/RLOP. All the experiments are
run on the platform with Intel Core i9-12900K CPU and
Nvidia GeForce RTX 3090 Ti GPU.

4.1 Lunar Lander
Lunar lander is a classic rocket trajectory optimization prob-
lem, which is part of the Box2D environments of gymna-
sium. The algorithm is required to control the engines of a
rocket on three directions to make a smooth landing. It in-
cludes both discrete and continuous versions. We implement
a DQN agent for the discrete version and a SAC agent for
the continuous version based on RLOP. The changes of the
average reward of a batch during training are presented in
Figure 2. We evaluate each algorithm on 1000 episodes. The
results are shown in Table 3. We also conduct informal com-
parative experiments between RLOP and Stable Baselines3.
Roughly, even though RLOP uses pybind11 to indirectly in-
voke python-based gym environments, it can still achieve at
least 1.4 times the efficiency of Stable Baselines3.

4.2 Vehicle Routing Problem
Vehicle routing problem (VRP) is a classic combinatorial op-
timization problem, which involves finding routes with the
lowest cost for a fleet of vehicles to a set of customers. We
implement insertion (a heuristic based method), local search,
simulated annealing and tabu search based on RLOP to solve
two sets of problems named as C50 (10 vehicles, 50 cus-
tomers) and C200 (10 vehicles, 200 customers) respectively.
Each set contains 100 randomly generated problems, with
each vehicle having a different depot. We first run the in-
sertion algorithm to generate a initial solution and then use
other algorithms to improve it. The average cost and com-
puting time are presented in Table 4. As is shown, the tabu

0 0.2 0.4 0.6 0.8 1

·106

−2

0

2

4

Time step

R
ew

ar
d

Continuous/SAC
Discrete/DQN

Figure 2: The changes of the average reward of a batch during train-
ing in lunar lander (Continuous/Discrete).

Train Eval (Reward)
Algorithm Time (s) Step Mean Std

SAC 191.22 106 282.73 22.14
DQN 44.58 106 152.48 72.84

Table 3: Comparison between SAC and DQN

search and simulated annealing get relatively better results,
but with longer computing time.

5 Conclusion
In this paper, we introduced a generic, lightweight and open-
sourced framework for reinforcement learning, optimization,
and planning/search algorithms (RLOP), aimed at simplify-
ing studying, comparing and integrating algorithms across
domains. It implements only the core logic of algorithms,
abstracting away domain-specific details by defining inter-
face functions, which enables flexible customization and ef-
ficient integration across different domains. In this paper, we
presented the algorithms implemented in RLOP and demon-
strate their applications in solving benchmark problems. As
an open-sourced project, we anticipate further enhancements
and updates to RLOP in the future.

C50 C200
Algorithm Cost Time Cost Time

(ms) (ms)

Insertion 509.02 0 1077.43 0.01
Local Search 423.99 5.86 901.32 173.28
SA 419.25 34.34 837.96 461.12
Tabu Search 368.23 18.47 899.7 705.01

Table 4: Comparison between algorithms on VRP

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8853

https://github.com/songzhg/RLOP


References
[Bello et al., 2016] Irwan Bello, Hieu Pham, Quoc V Le,

Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940, 2016.

[Bertsimas and Tsitsiklis, 1993] Dimitris Bertsimas and
John Tsitsiklis. Simulated annealing. Statistical science,
8(1):10–15, 1993.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[Dabas et al., 2022] Mayank Dabas, Nishthavan Dahiya, and
Pratish Pushparaj. Solving connect 4 using artificial intel-
ligence. In International Conference on Innovative Com-
puting and Communications: Proceedings of ICICC 2021,
Volume 1, pages 727–735. Springer, 2022.

[Glover, 1990] Fred Glover. Tabu search: A tutorial. Inter-
faces, 20(4):74–94, 1990.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou,
Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter
Abbeel, et al. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905, 2018.

[Jakob et al., 2017] Wenzel Jakob, Jason Rhinelander, and
Dean Moldovan. pybind11–seamless operability be-
tween c++ 11 and python. URL: https://github.
com/pybind/pybind11, 2017.

[Knuth and Moore, 1975] Donald E Knuth and Ronald W
Moore. An analysis of alpha-beta pruning. Artificial in-
telligence, 6(4):293–326, 1975.

[Lanctot et al., 2019] Marc Lanctot, Edward Lockhart, Jean-
Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl
Tuyls, Shayegan Omidshafiei, et al. Openspiel: A frame-
work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

[Raffin et al., 2019] Antonin Raffin, Ashley Hill, Maximil-
ian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3, 2019.

[Ryan, 2003] Conor Ryan. Computer algorithms. In
Robert A. Meyers, editor, Encyclopedia of Physical Sci-
ence and Technology (Third Edition), pages 507–523.
Academic Press, New York, third edition edition, 2003.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Silver et al., 2017] David Silver, Thomas Hubert, Julian
Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. Mastering chess and shogi by
self-play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Zhang et al., 2022] Tianyu Zhang, Amin Banitalebi-
Dehkordi, and Yong Zhang. Deep reinforcement learning
for exact combinatorial optimization: Learning to branch.
In 2022 26th International Conference on Pattern
Recognition (ICPR), pages 3105–3111. IEEE, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8854


	Introduction
	Framework Design
	Features
	Implemented Algorithms

	Related Work
	Case Study
	Lunar Lander
	Vehicle Routing Problem

	Conclusion

