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Abstract

A carbon market is a market-based tool that incen-
tivizes economic agents to align individual profits
with the global utility, i.e., reducing carbon emis-
sions to tackle climate change. Cap and trade
stands as a critical principle based on allocating and
trading carbon allowances (carbon emission credit),
enabling economic agents to follow planned emis-
sions and penalizing excess emissions. A central
authority is responsible for introducing and allocat-
ing those allowances in cap and trade. However,
the complexity of carbon market dynamics makes
accurate simulation intractable, which in turn hin-
ders the design of effective allocation strategies. To
address this, we propose an adaptive mechanism
design framework, simulating the market using hi-
erarchical, model-free multi-agent reinforcement
learning (MARL). Government agents allocate car-
bon credits, while enterprises engage in economic
activities and carbon trading. This framework il-
lustrates agents’ behavior comprehensively. Nu-
merical results show MARL enables government
agents to balance productivity, equality, and car-
bon emissions. Our project is available at https:
//github.com/xwanghan/Carbon-Simulator.

1 Introduction
Climate change has emerged as a pressing worldwide con-
cern [Schmalensee et al., 1998], significantly imperiling
global ecosystems, economic systems, and sociopolitical sta-
bility. The United Nations reports that in developing re-
gions, one in ten individuals subsists on less than US$ 1.90
daily [Nations, 2023b], with 2.2 billion people deprived
of access to safely managed potable water resources [Na-
tions, 2023c]. The burgeoning climate crisis amplifies these
challenges, as worldwide temperature escalations provoke
droughts and rising sea levels, exacerbating famines and en-
hanced forced displacements [Nations, 2023a].

In 2016, 196 nations endorsed the Paris Agreement to
mitigate climate change collaboratively. However, pursuing
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transnational environmental targets often conflicts with short-
term interests, requiring mechanisms to reconcile local and
international objectives [UNFCCC, 2015]. Carbon markets
exemplify such mechanisms [UNFCCC, 1997; Wara, 2007;
Zhou and Li, 2019], incentivizing economic agents to curb
emissions. The cap and trade format, predominant in carbon
markets, involves allocating and trading allowances [Goul-
der and Schein, 2013; Schmalensee and Stavins, 2017;
Zhou and Wang, 2016; Hepburn, 2007]. Economic agents
must possess sufficient allowances to offset emissions or face
penalties for surplus emissions. The cap and trade system
sets a predetermined limit on allowances within an econ-
omy, with a central authority introducing and allocating al-
lowances based on specified objectives. While this policy
helps balance efficiency and fairness, determining the optimal
allocation remains challenging in general economic contexts.
The high-dimensional dynamics of the carbon market, influ-
enced by rational, self-interested, and far-sighted economic
agents, lead to market simulation reliance on models like
CGE (computable general equilibrium) [Hübler et al., 2014;
Tang et al., 2016; Bi et al., 2019] or ABM (agent-based mod-
eling) [Tang et al., 2017; Zhou et al., 2016; de Sousa, 2021]
frameworks, employing simplifying assumptions that are ar-
duous to validate, such as production and trading behaviors.

Given the unique nature of the carbon market, we inte-
grate the AI Economist [Zheng et al., 2022; Trott et al., 2021]
to simulate market dynamics. Our adaptive mechanism de-
sign framework, employing hierarchical, model-free MARL,
mimics the carbon market. Lower-level enterprise agents en-
gage in realistic economic activities, such as emitting carbon
dioxide, trading emission credits, and investing in emission
reduction projects. Higher-level government agents analyze
diverse allocation strategies to achieve balanced efficiency
and fairness, leading to significant carbon emission reduc-
tions. The framework demonstrates the conduct of rational,
self-interested, and far-sighted agents within the carbon mar-
ket. We emphasize that our approach is not a simple transfer
of the AI-Economist from taxation to carbon credit allocation.
Simulating the carbon market is challenging due to limited
data, fluctuating regulations, and non-market factors.

To validate our simulator, we conducted comparisons with
several widely adopted indicator allocation approaches at the
firm level [Zhou and Wang, 2016]. The simulation results
indicate reasonable action responses by enterprise agents to
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Figure 1: Simulator structure. Left: One episode is divided into several periods, and in each periods, the government firstly acts to allocate
carbon credits; the remaining of time, enterprises do their economics activities. Right: Enterprises’ economics activities are modeled in a
Gather-Trade-Build game; in this grid map, they can produce properties (build) to get coins, can move which can gather carbon credits and
increase community’s total power (green project investment), do carbon reduction invest action to reduce the carbon emission level (carbon
reduction investment), also trade carbon credits and coins with each other.

these allocation policies. Additionally, numerical findings
demonstrate that government agents, through MARL, effec-
tively discover allocation policies capable of balancing pro-
ductivity, equity, and carbon emissions. Our primary con-
tributions encompass: 1) We propose a systematic carbon
market simulator featuring carbon credits allocation and trad-
ing, and achieve realistic carbon economy simulation based
on hierarchical, model-free MARL. 2) We implement several
widely adopted indicator allocation approaches at the firm
level as baselines. 3) We observe that learning-based alloca-
tion policies possess the potential to effectively balance pro-
ductivity, equity, and carbon emissions.

2 Carbon Market Modeling
We present a carbon market framework which exhibits a
hierarchical structure, consisting of the higher-level gov-
ernment RL agent and lower-level enterprise RL agents.
Consequently, it is referred to as a hierarchical model-
free MARL framework, which has also been known as
a manager-worker architecture [Shu and Tian, 2019; Ma
and Wu, 2020]. Concretely, the issues encountered by
higher-level government agents can be modeled as a stan-
dard Markov decision process [Bellman, 1957] Mh =
(S,A,P,R, γ). The problems encountered by the lower-
level enterprise agents can formally defined by a partially
observable stochastic game [Hansen et al., 2004] Gl =

(S,A|I|
i=1,R

|I|
i=1,P,O|I|

i=1, I). And both government and en-
terprise are aimed to obtain optimal policies π that maximize
their expected return Eai∼πi,a−i∼π−i,s′∼P

[∑
t γ

trit
]
.

2.1 Model Details
Observation space O. In real world, enterprise can
observe their own attributes s (skills: enterprise size, R&D
capabilities), assets x (income xi, carbon emission level xl

and carbon emission credit xc), and acquire request data in
the carbon market from the news. While the government can
collect data from all enterprises and access current market
prices Wt. Additionally, because we model the economics

activities based on a Gather-Trade-Build game [Zheng et
al., 2020], which effectively models general market-based
behaviors, the position information O should also add to
both observation. Therefore, the government’s observation
space is Og = {Wt, s, x,O}, while the enterprise agent i can
observe Oi = {si, xi, Oi}, i ∈ {1, ..., I}.

Action space A. The government and enterprises are make
decisions in different timescales (Figure 1). When enterprise
agents act, they have the options to Produce, Invest,
Trade and Move. Moveover, carbon emission credits are
virtual resources which can be overdrafted. At the end of
each year, when an enterprise settles carbon emission credits
overdraft, the overdrafted portion will be penalized according
to a unit price of p. The action of the government agent is a
I + 1 dimensional discrete vector. At the beginning of each
period, the government decides the allocation of credits for
each enterprise as well as the total credits for the period.

Reward function R. Each enterprise’s objective is to max-
imize utility which is defined as [Debreu and others, 1954]:

ri = (z1−η − 1)/(1− η)− cl ∗ l, η = 0.23, (1)

where z is income that the sum of enterprise‘s coins, cl is
labor’s weight, and l is also the cumulative labor during all
previous time steps. Inspired by [Zheng et al., 2020], the
government’s objective is to maximize social welfare, which
is defines as multiplication of productivity, equality and at-
tenuation coefficient of excess carbon emissions:

r =
∑

i(x
c
i ) ∗Gini(xc) ∗ exp(−ce ∗ ee), (2)

where ce is a coefficient and ee is total excess emissions.

2.2 Model Calibration
The structural parameters of simulation were calibrated to
meet the following objectives: 1) We calibrate the model
of carbon emission reduction investments to possess simi-
lar attributes of risk, delay, and other behaviors observed in
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real-life investment activities [Lee, 2020]. Additionally, we
calibrate parameters to ensure that the carbon price changes
caused by carbon emission reduction investments are aligned
with price tiers set within the carbon trading market. 2) The
penalty for excess carbon emissions is also calibrated such
that the excess penalty is only offset when a certain level of
carbon emission reduction investment by enterprises, along-
side green project investments by all enterprises, is achieved.
3) Furthermore, ensure that the outcomes resulting from var-
ious behaviors of enterprise agents are on the same temporal
and economic scale.

3 Simulation and Visualization
Upon the completion of carbon market modeling, we can em-
ploy MARL to train the government (enterprise) agent(s), en-
abling them to exhibit behavior that closely resembles real-
world scenarios, thereby achieving a realistic simulation of
the carbon market.

3.1 Baseline Allocation Policies
We utilize the indicator approach [Zhou and Wang, 2016] to
allocate the proportion of total carbon credits for each enter-
prise annually, with Emission (also called grandfathering or
GF [Zetterberg et al., 2012]), Emission intensity (also called
benchmarking or BM [Groenenberg and Blok, 2002]), and
Enterprise size selected as indicators (shorten as SI). Due to
the large temporal scale of our simulation spanning 10 years,
the government agent needs to allocate the total carbon emis-
sion credits for each year over the 10-year period. We refer
to the global carbon emission historical data and future fore-
casts provided by the IPCC [Climate, 2023] to establish emis-
sion scenarios on a large temporal scale: we call this scenario
Convex. Additionally, we provide scenarios where the annual
emission targets decrease gradually over time (Decreasing),
and scenarios where the annual emission targets remain con-
stant over time (Flat).

3.2 MARL Allocation Policy Training
MARL training aims to discover an allocation policy that
maximizes the Government’s reward r, while also finding a
balance between productivity, equality, and carbon emissions
under the designated economy-climate coefficient ce.

For the joint optimization of enterprise and government
policies, we first initialize the parameters of enterprise agents
to those trained under government policies based on Flat and
Enterprise size as the indicator (SI) scenario. Subsequently,
the parameters of government policies are randomly initial-
ized. During training, we utilize the PPO algorithm [de Witt
et al., 2020] under the RLlib framework [Liang et al., 2018].
Additionally, we experiment with various hyperparameters
for both enterprise and government agents, including learn-
ing rate and entropy regularization. Following training with
400 million samples, we find both enterprise and government
agents to converge to stable policies, which effectively bal-
ance productivity, equity, and carbon emissions. (Figure 2)

3.3 Visualization
We have also implemented visualization for the simulator,
which provides a detailed breakdown of each time step within

Figure 2: Quantitative results of different allocation policies.

Figure 3: Simulator dashboard, it presents detailed information en-
compassing enterprises’ attributes, assets, and actions within a sin-
gle time step across various example episodes under different poli-
cies. Additionally, it provides visual representations of the average
carbon prices over different periods and presents rewards for both
enterprises and government.

an episode. Through this visualization tool, we can gain a
deeper understanding of and intuitive comparison between
different baselines and MARL strategies (Figure 3).

4 Closing Remarks
In this paper, enterprise and government agents participate in
carbon market simulations via MARL-based adaptive mech-
anism design. By fine-tuning the government’s reward func-
tion, we can exploit the adaptability to strike a balance be-
tween various economic and climate objectives. Unlike the
commonly used indicator approach, MARL-based agents can
incorporate more comprehensive information, enabling them
to formulate more personalized and diversified allocation
strategies. We also illustrates the practicality of employing
hierarchical model-free MARL for carbon market simulation.
It envisions the potential of machine learning to contribute to
global emission reduction endeavors. However, the proposed
simulator still needs to be improved, notably the absence
of empirical modeling for emissions reduction investments
made by enterprises. Consequently, future simulations can
enhance their realism by integrating more real-world data.
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Ethical Statement
In our development of the carbon market simulator, we adhere
to principles of transparency, integrity, and fairness, ensuring
compliance with the highest ethical standards while advanc-
ing understanding in environmental economics. We prioritize
privacy, equity, and social responsibility throughout our re-
search and development process. However, it’s important to
acknowledge that our simulator may not encompass all as-
pects of the real world. As such, we do not endorse the use of
learned policies for actual policy making.
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