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Abstract
Deep learning models have shown their strengths
in various application domains, however, they of-
ten struggle to meet safety requirements for their
outputs. In this paper, we introduce PiShield, the
first package ever allowing for the integration of
the requirements into the neural networks’ topol-
ogy. PiShield guarantees compliance with these re-
quirements, regardless of input. Additionally, it al-
lows for integrating requirements both at inference
and/or training time, depending on the practition-
ers’ needs. Given the widespread application of
deep learning, there is a growing need for frame-
works allowing for the integration of the require-
ments across various domains. Here, we explore
three application scenarios: functional genomics,
autonomous driving, and tabular data generation.

1 Introduction
Deep neural networks (DNNs) have shown their strengths in
various application domains. However, they often fail to com-
ply with given requirements defining the safe output space
of the model. To obviate this problem, neuro-symbolic AI
methods were introduced, which can be broadly classified
into two categories. The first comprises methods able to
integrate the requirements in the loss function and penalize
the models when they violated the requirements [Diligenti
et al., 2012; Diligenti et al., 2017; Donadello et al., 2017;
Xu et al., 2018; Fischer et al., 2019; Nandwani et al., 2019;
Badreddine et al., 2022; Li et al., 2023; Ahmed et al., 2022c;
Stoian et al., 2023]), and while these approaches help reduce
the requirements’ violation incidence, they cannot guaran-
tee their satisfaction. Emerging later, the second category
consists of methods able to incorporate a given set Π of
requirements (also called constraints) directly in the topol-
ogy of the network [Giunchiglia and Lukasiewicz, 2021;
Hoernle et al., 2022; Ahmed et al., 2022b] and, thus, to
guarantee their satisfaction. More recently, an alternative
method [van Krieken et al., 2023], also capable of guaran-
teeing compliance with the constraints, proposed using neu-
ral networks for performing approximate inference in poly-
nomial time to address the scalability problem of proba-
bilistic neuro-symbolic learning frameworks such as Deep-

ProbLog [Manhaeve et al., 2018]. For an in-depth survey
of the methods combining deep learning with logical con-
straints, we refer to [Giunchiglia et al., 2022], while for
a broad survey on neuro-symbolic AI, we refer to [d’Avila
Garcez et al., 2019].

In this paper, we propose PiShield1,2, a PyTorch-based
package allowing for seamlessly integrating domain require-
ments into neural networks by means of new PyTorch layers
that can be built on top of any neural network. These layers,
which we call Shield Layers, adhere to the principles outlined
in our most recent works [Stoian et al., 2024; Giunchiglia
et al., 2024], advocating for a more requirements-driven ma-
chine learning as in [Giunchiglia et al., 2023a], and guarantee
the satisfaction of the requirements regardless of the input.

The Shield Layers can be applied during inference and/or
training, depending on the practitioners’ needs. For users that
have restricted access to a model but require that the outputs
of their models are compliant with a set of rules, PiShield of-
fers an easy-to-use interface to meet this need. Alternatively,
PiShield can guide model training, suiting also practitioners
accustomed to modifying their models. As expected, its abil-
ity to ensure compliance makes it ideal for safety-critical sce-
narios. Furthermore, studies [Giunchiglia and Lukasiewicz,
2020; Giunchiglia et al., 2024; Giunchiglia and Lukasiewicz,
2021; Stoian et al., 2024] have repeatedly shown its efficacy
in aiding model learning. We illustrate both of these aspects
on three different application domains: functional genomics,
autonomous driving, and tabular data generation domains.
Related Work. A closely related work is Pylon [Ahmed et
al., 2022a], a framework built on PyTorch which allows users
to integrate constraints into a loss function. Similarly, the
LTN package [Badreddine et al., 2022] provides a Tensor-
Flow implementation of the Logic Tensor Networks (LTNs),
while LTNTorch [Carraro, 2022] provides its PyTorch imple-
mentation. However, unlike our framework, all the methods
described above cannot guarantee the satisfaction of the con-
straints.

2 PiShield Overview
PiShield is built on top of PyTorch, allowing for a seamless
integration of Shield Layers into neural networks. Figure 1

1Code: https://github.com/mihaela-stoian/PiShield
2Website: https://sites.google.com/view/pishield

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8805

https://github.com/mihaela-stoian/PiShield
https://sites.google.com/view/pishield


Figure 1: PiShield overview.

gives an overview of how to apply PiShield to deep neural
networks. As shown in the Figure, to constrain a DNN during
training, the architecture of the DNN needs to be changed by
appending a Shield Layer immediately after the output layer.
To use PiShield only at inference time, it is enough to simply
build a Shield Layer outside the neural network and apply it
on the outputs to make them compliant with the requirements.
Regardless of its use, each Shield Layer requires only two
elements to be instantiated: (i) the dimension of the input to
the layer (hence in most cases the dimension of the output of
the network), and (ii) the path to the file which contains the
requirements.
Requirements. The requirements can be expressed either
as a propositional logic formula in conjunctive normal form
(CNF) or as linear inequalities. In the file, each line should
contain a single requirement, which will thus be either a
clause in the first case or a single linear inequality in the latter.
Example 1. Suppose we have a simple multi-label classifica-
tion problem where we are given as input images taken from
an autonomous vehicle, and we have to identify whether a
traffic light appears in the image, and whether it is green, yel-
low, or red. For each image, a standard neural network for
this task will output a 4-dimensional vector where each ele-
ment corresponds to one of the concepts of interest. Suppose,
for example, the outputs of the neural networks are ordered
in the following way: TrafficLight, Red, Yellow,
Green. Then the file, containing the knowledge that a traffic
light is always associated with one of the colors and that the
colors associated with a traffic light are mutually exclusive,
will have the format below:

not y 0 or y 1 or y 2 or y 3

not y 0 or not y 1 or not y 2

not y 0 or not y 1 or not y 3

not y 0 or not y 2 or not y 3

Example 2. Suppose we have a tabular data generation
problem, where we have to generate a synthetic dataset for
a clinical trial. Further, suppose that we have the follow-
ing knowledge about the problem available: (i) the max-
imum hemoglobin recorded per patient should be always
higher or equal than the minimum, and (ii) the maximum
temperature recorded should be at least as high as the min-
imum. Then, assuming that the outputs of the neural net-
work are ordered as MaxHemoglobin, MinHemoglobin,
MaxTemp, MinTemp, the input file should have the follow-
ing format:

Listing 1: Correcting predictions with PiShield at inference time.
1from pishield.shield_layer import build_shield_layer
2
3def correct_predictions(predictions,requirements_path):
4 num_variables = predictions.shape[-1]
5 shield_layer = build_shield_layer(num_variables,

requirements_path)
6 corrected_predictions = shield_layer(predictions)
7 return corrected_predictions

Listing 2: Building a Shield Layer into a DDN to train with it.
1from pishield.shield_layer import build_shield_layer
2
3class Shielded_DNN(torch.nn.Module):
4 def __init__(self, num_dim, requirements_path, ..):
5 self.model = torch.nn.Sequential(...)
6 self.shield_layer = build_shield_layer(num_dim,

requirements_path)
7 ...
8
9 def forward(self, input):

10 output = self.model(input)
11 corrected_output = self.shield_layer(output)
12 return corrected_output

y 0 - y 1 >= 0

y 2 - y 3 >= 0

Usage. As it can be seen from both Listings 1 and 2, to build
our layer, we only need (lines 5 and 6, respectively) to call
the function build shield layer, which takes as input
two parameters: (i) the dimension of the input to the layer,
and (ii) the path to the requirements file. Once instantiated,
the Shield Layer receives as input a tensor of predictions p
(possibly violating the requirements) and returns a tensor p̂
(of the same dimension as p), which is now guaranteed to
be compliant with the requirements. PiShield benefits from
an easy-to-use interface, and so, correcting p with a Shield
Layer is a one-step operation consisting of a forward call of
the Shield Layer on p. Listing 1, in particular, shows how
to do all these steps at inference time. On the other hand,
Listing 2 shows how to integrate the layer at training time for
which the layer’s forward call needs to be done before the
backpropagation step. As shown in the Listing, the easiest
way to match this condition is to instantiate the Shield Layer
in the constructor of the DNN and then call the layer inside
the usual forward method (as shown in line 11).

3 Example Scenarios
The need for a package like PiShield naturally raises in many
application domains. Here, we discuss three example scenar-
ios to which we applied the layers implemented in PiShield.

Functional Genomics. In functional genomics, the task is
to predict a set of (hierarchical) functions that genes may
possess [Vens et al., 2008; Wehrmann et al., 2018; Clare,
2003]. As such, it belongs to the broad category of Hier-
archical Multi-label Classification (HMC) problems, which
are multi-label classification problems whose labels are or-
ganized in a hierarchical structure. The hierarchy can be
captured by propositional logic rules, where the atoms cor-
respond to the labels. In addition to functional genomics,
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Figure 2: The unconstrained models (top row) violate simple back-
ground knowledge rules, predicting (i) that a pedestrian is both on
the right and on the left pavement, and (ii) that a person is both a
pedestrian and a cyclist, and is moving towards and away from the
self-driving vehicle at the same time. On the other hand, the predic-
tions made using PiShield (bottom row) are guaranteed to be com-
pliant with the background knowledge.

HMC problems find applications in many real-world do-
mains, such as document (see, e.g., [Klimt and Yang, 2004;
Lewis et al., 2004]) and image classification (see, e.g., [Deng
et al., 2009]), or medical diagnosis (see, e.g., [Dimitrovski et
al., 2008]). In our demo video3, we show on a simple task
that applying PiShield to a model for this task guarantees that
the outputs preserve the hierarchical structure.

Road Events Detection. Generalizing the above prob-
lem, we have the task of assigning sets of labels to in-
stances of various types, including images, documents etc.
Given available domain knowledge, constraints are placed
on the possible outputs, eliminating impossible (i.e., con-
tradicting background knowledge) outcomes. In our recent
work [Giunchiglia et al., 2024], we considered the task of
multi-label classification for an autonomous driving scenario
using the ROAD-R dataset [Giunchiglia et al., 2023b], the
first real-world dataset for autonomous driving with manu-
ally annotated logical constraints. ROAD-R is build upon the
road event detection dataset ROAD [Singh et al., 2023] by
adding 243 propositional logic requirements written in CNF.
We showed that applying Shield Layers on the outputs is not
only able to guarantee that these requirements are satisfied,
but also results in increased performance, as seen in Table
2 of [Giunchiglia et al., 2024]. Figure 2 shows examples of
how using PiShield can impact the predictions’ quality, which
is intrinsically coupled with the safety guarantees.

Tabular Data Generation. Another application where we
utilized PiShield is the task of synthesizing tabular data such
that the outputs of a model for this task satisfies background
knowledge rules provided as linear inequalities, which cap-
ture relations between the features of the tabular data. Ap-
plying Shield Layers to standard deep generative models
(DGMs) resulted in more realistic outputs, which are compli-

3Video: http://tinyurl.com/pdv9eafa
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Figure 3: Real data (left) and samples generated by an uncon-
strained neural network (middle) and a neural network constrained
with PiShield (right).

Scenario Base. PiShield

Functional genomics(AU(PRC)) 0.225 0.241
Autonomous driving (f-mAP) 0.288 0.303
Tabular data generation (Utility-F1) 0.430 0.458

Table 1: Aggregated performance. The best results are in bold.

ant with the background knowledge. For example, consider
the constraint MaxHaemoglobin ≥ MinHaemoglobin, which
is a real constraint that we encountered in [Stoian et al., 2024]
in one of the datasets. In Figure 3, following the qualitative il-
lustrations in Figures 3-6 of our previous work [Stoian et al.,
2024], we show how the constrained DGMs match the real
data more closely in the distribution of their outputs. Addi-
tionally, through an extensive empirical analysis, we showed
(in Table 2 of [Stoian et al., 2024]) that integrating Shield
Layers into DGMs yields an increased performance across
two standard metrics used in tabular data generation.
Performance. In Table 1, we compare baseline models
with their constrained versions, which use PiShield during
training. We report results for three real-world applications:
(i) functional genomics, based on Table 3 of [Giunchiglia and
Lukasiewicz, 2020], reporting the area under the average pre-
cision and recall curve (AU(PRC)) over 8 datasets, (ii) au-
tonomous driving, based on Table 2 of [Giunchiglia et al.,
2024], reporting the frame-wise mean average precision (f-
mAP) on the ROAD-R dataset, annotated with 243 propo-
sitional requirements; (iii) tabular data generation, based on
Table 2 of [Stoian et al., 2024], reporting the F1-score for the
utility performance (Utility-F1) averaged over 5 deep gen-
erative model types and 5 different datasets, annotated with
up to 31 linear inequality constraints. As we can see, us-
ing PiShield during training provides major performance im-
provements over the unconstrained baselines.

4 Conclusions
In this paper, we introduced PiShield, the first package that
allows for injecting requirements into neural networks’ topol-
ogy by building Shield Layers, which correct the outputs so
that they are guaranteed to satisfy the rules. PiShield can be
applied (i) during training by building Shield Layers into the
neural networks’ architecture, or (ii) at inference time by cor-
recting the neural networks’ outputs as a post-processing step.
We envision our package will be of use to practitioners work-
ing on real-world applications where domain knowledge can
be expressed as propositional or linear constraints.
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Ethical Statement
There are no ethical issues directly associating with the
framework’s specification and available methods. Any eth-
ical issues would only arise from the context in which the
framework is planned to be used and on the constraints pro-
vided by the users. For example, when generating tabular
data, the users could create a set of constraints that would fa-
cilitate (partially) recovering specific records in the training
data, thus posing problems in cases where the data generated
in this way can be made publicly available, but the training
data cannot.
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with logical constraints but without shortcut satisfaction.
In Proceedings of International Conference on Learning
Representations, 2023.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Du-
mancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. DeepProbLog: Neural probabilistic logic pro-
gramming. In Proceedings of Neural Information Process-
ing Systems, 2018.

[Nandwani et al., 2019] Yatin Nandwani, Abhishek Pathak,
Mausam, and Parag Singla. A primal dual formulation for
deep learning with constraints. In Proceedings of Neural
Information Processing Systems, 2019.

[Singh et al., 2023] Gurkirt Singh, Stephen Akrigg,
Manuele Di Maio, Valentina Fontana, Reza Javan-
mard Alitappeh, Salman Khan, Suman Saha, Kossar Jeddi
Saravi, Farzad Yousefi, Jacob Culley, Tom Nicholson,
Jordan Omokeowa, Stanislao Grazioso, Andrew Bradley,
Giuseppe Di Gironimo, and Fabio Cuzzolin. ROAD: The
ROad event Awareness Dataset for autonomous driving.
IEEE Trans. Pattern Anal. Mach. Intell., 2023.

[Stoian et al., 2023] Mihaela C. Stoian, Eleonora
Giunchiglia, and Thomas Lukasiewicz. Exploiting
T-norms for Deep Learning in Autonomous Driving.
In Proceedings of International Workshop on Neural-
Symbolic Learning and Reasoning, 2023.

[Stoian et al., 2024] Mihaela C. Stoian, Salijona Dyrmishi,
Maxime Cordy, Thomas Lukasiewicz, and Eleonora
Giunchiglia. How Realistic Is Your Synthetic Data?
Constraining Deep Generative Models for Tabular Data.
In Proceedings of International Conference on Learning
Representations, 2024.

[van Krieken et al., 2023] Emile van Krieken, Thiviyan
Thanapalasingam, Jakub M. Tomczak, Frank Van Harme-
len, and Annette Ten Teije. A-neSI: A scalable approx-
imate method for probabilistic neurosymbolic inference.
In Proceedings of Neural Information Processing Systems,
2023.

[Vens et al., 2008] Celine Vens, Jan Struyf, Leander Schiet-
gat, Saso Dzeroski, and Hendrik Blockeel. Decision trees
for hierarchical multi-label classification. Mach. Learn.,
73(2), 2008.

[Wehrmann et al., 2018] Jonatas Wehrmann, Ricardo Cerri,
and Rodrigo Barros. Hierarchical multi-label classification
networks. In Proceedings of International Conference on
Machine Learning, 2018.

[Xu et al., 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao
Liang, and Guy Van den Broeck. A semantic loss func-
tion for deep learning with symbolic knowledge. In Pro-
ceedings of International Conference on Machine Learn-
ing, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8809


	Introduction
	PiShield Overview
	Example Scenarios
	Conclusions

