
Rhythm Inference Helping Writing Music Scores

François Schwarzentruber
University of Rennes, IRISA, CNRS, France

francois.schwarzentruber@ens-rennes.fr

Abstract
We present a new problem called rhythm inference.
It consists in inferring the duration of each note and
each rest from a partial specification. We then for-
mulate rhythm inference as a constraint satisfaction
problem and we use mixed linear programming to
solve it. The solution is implemented for a lan-
guage representing music scores, called abcd. In-
terestingly, the rhythm is inferred in real-time from
partial musical indications.

1 Introduction
Editing music scores on a computer can be done essentially
by two means: graphical editors (e.g. Musescore) or textual
forms (e.g. Lilypond, ABC). However, it is often tedious to
edit rhythm, i.e. to specify/modify the duration of each note
and each rest in a music score1. Furthermore, the represen-
tation in Lilypond or ABC of a score is verbose and requires
some expertise.

In this paper, we propose a solution where the user only
partially specify the rhythm. As it is complicated to rep-
resent a partial specification graphically, the input is a text.
Our algorithmic solution is implemented in a language, called
abcd2. Moreover, the language abcd has the same spirit as
the markdown language used to represent documents. Indeed,
its syntax is concise and looks like a real music score.
Example 1. In order to write the following music score:

the user writes the following abcd code:
4/4 a. b a g a |

As you see in the example, in abcd, you may only spec-
ify partially the durations of the notes; and the textual form is
suitable for that purpose. More precisely, the durations are in-
ferred from the amount of space left between notes, and also

1or in Lilypond for a sequence of notes that will then have all the
same durations

2See https://github.com/francoisschwarzentruber/abcd for the
specification of the language abcd.

from musical indications. The dot (.) on the first note a. in-
dicates that its duration is a standard duration (1, 1/2, 1/4, 1/8,
etc.) augmented with its half (i.e. we get 3/2, 3/4, 3/8, etc.).
The last four notes seem to have smaller and equal durations.
The system then infers some rhythm that is consistent with
the abcd textual input.

If the user changes the amount of space between notes then
the system outputs another score.

Example 2. The following code is obtained from the one in
Example 1 but by reducing the length of the first a and in-
creasing the length of the second a:

4/4 a. b a g a |

It leads to the following different score:

Our contribution is the definition of the so-called rhythm
inference problem, and its implementation. Rhythm inference
is the mechanism of guessing the durations of the notes and
the rests from the spacing and some partial rhythmic indica-
tions. Using rhythm inference has several advantages:

1. The source code in abcd is more succinct than in Lily-
pond or in ABC. Thus, it is more readable.

2. It avoids boredom when writing music since the user
does not have to specify the duration of each note any-
more.

3. As shown in Example 2, it is convenient to modify an
existing rhythm. The user just has to add/remove some
indications in the source code; e.g. add/remove dots (.),
add/remove/change measure bars (|), etc. This advan-
tage is especially interesting in combination with au-
tomatic transcription, which consists in automatically
computing the rhythm from a human performance. As
the output of automatic transcription often contains er-
rors, it is relevant to have a language with rhythm infer-
ence in order to correct the errors more easily.

4. In the output, each measure is guaranteed to last the total
duration specified by the signature (e.g. 4/4) and the
spacing between notes.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8789

https://github.com/francoisschwarzentruber/abcd

Outline. In Section 2, we define formally the problem of
rhythm inference. In Section 3, we present how the tool is
implemented. In Section 4, we present the demonstration. In
Section 5 we discuss the related work. In Section 6 we discuss
the future work.

2 Rhythm Inference
Let us start with an informal description and some examples.
We then explain how the problem is formalized as a constraint
satisfaction problem. We then explain how it is transformed
into a Mixed Linear Program.

2.1 Informal Description
Rhythm inference is by its nature a constraint satisfaction
problem. Its problem is first made of approximative durations
δ̂ = (δ̂1, . . . , δ̂n) ∈ R+n, where R+ is the set of the strictly
positive real numbers. In our case, δ̂i is just the number of
spaces between the i-th note and the i+1-th note (or between
the n-th note and the measure bar | if i = n). In Example 1,
we have δ̂ = (9, 1, 1, 1, 1).

The second part of the input consists of the finite domains
of the possible durations of the notes. Consider again Exam-
ple 1. The last four notes have no special rhythm indications.
So their corresponding domains are the set of standard note
durations. According to the following table of given the du-
rations of standard notes

Notes: �
 ♩ � . . .
Durations: 1 1/2 1/4 1/8 . . .

we set
∆2=∆3=∆4=∆5 = {1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64}.

The first note a. is however dotted. So the corresponding
domain is obtained from the standard domain by multipling
by 3/2 all the possible durations:

∆1 = {3/2, 3/4, 3/8, 3/16, 3/12, 3/64}.
If a note is specified to be part of a tuplet, the set ∆i is

adapted accordingly: we multiply its original durations by
1/k for a k-tuplet. The following example illustrates how the
sets ∆i are changed for a triplet.
Example 3. With the following code

4/4 (3 b e f’ c |

we set ∆1 = ∆2 = ∆3 = {1/3, 1/6, 1/12, . . . }. Indeed,
we multiplied the original durations by 1/3. This code pro-
duces

In abcd, the duration of a note can also be completely
specified in the user wants to. For instance if the i-th note
is a2, the 2 means that the note is a half-note
, thus the
corresponding domain is a singleton: ∆i = {1/2}.

To sum up, the textual input is transformed into an instance
(δ̂,∆1, . . . ,∆n). Now the goal is to infer some consistent
durations δ = (δ1, . . . , δn) ∈ R+n with respect to δ̂ and
∆1, . . . ,∆n. What is still pending is a formal definition of
consistency.

2.2 Formal Description
We propose to start our model of the notion of consistent du-
rations as a mathematical program with these constraints:

δi ∈ ∆i for all i = 1..n (1)
n∑

i=1

δi = T (2)

Constraint (1) says that each variable belongs to its domain.
Constraint (2) says that the sum of the duration equals the
duration T of a measure. For a 4/4 measure, T = 1. For a 3/4
measure, T = 0.75.

Now, we have to take care of the number of spaces
δ̂1, . . . , δ̂n. The first naı̈ve idea would be to minimize the
closeness between the variable δ1, . . . , δn and the approxima-
tive durations T δ̂1/s, . . . T δ̂n/s where s is the total number
of spaces; for instance minimize

∑n
i=1 |T δ̂i/s − δi|. How-

ever, the issue is that T δ̂i/s does not represent properly the
approximation duration of the i-th note. The scale of the
spaces is approximate and that is precisely the feature that
makes our approach robust.

Instead we focus on relative comparisons of durations.
Suppose δ̂i ≥ δ̂j . Then ideally we should have δi ≥ δj ;
meaning that if δi < δj then δj−δi should be as small as pos-
sible. To model this constraint, we introduce an error variable
errij . The obtain mathematical program (*) is:

minimize
∑n

i,j=1 errij{
(1) (2)

δj − δi ≤ errij if δ̂i ≥ δ̂j
The variables of the program are: for all i ∈ {1, . . . , n},

a finite-domain variable δi, and for all i, j ∈ {1, . . . , n} with
δ̂i ≥ δ̂j , a positive real number variable errij .

Definition 1. Rhythm inference is the algorithmic problem
defined as follows:

• input: approximative durations δ̂1, . . . , δ̂n ∈ R+, finite
domains ∆1, . . . ,∆n ⊆ R, duration T of a measure;

• output: inferred durations δ1, . . . , δn that form a solu-
tion of the mathematical program (*).

2.3 Reduction to Mixed Linear Programming
The mathematical program (*) described above can be trans-
formed into a mixed linear program as follows. For all
i = 1..n, for all possible duration d ∈ ∆i, we introduce
a Boolean variable xid ∈ {0, 1}. The intuitive meaning of
xid = 1 is δi = d. We add the constraint

∑
d∈∆i

xid = 1
saying that δi takes a unique value. We then replace each
occurrence of δi in constraints by

∑
d∈∆i

d× xid.
The obtained linear program is mixed: the variables errij

are positive real number variables, while the xij are Boolean
variables.

3 Tool Description
The graphical user interface is divided in two parts (see
Figure 1): the top is the text editor for the code written

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8790

Figure 1: Screenshot of the tool. On the top: the abcd code. On the
bottom: the output.

in abcd; the bottom is the corresponding generated music
score. The graphical user interface is written in standard
HTML/JavaScript/CSS. The display of the music score is per-
formed by the library abcjs3.

Roughly speaking, the tool takes the score description writ-
ten in our markdown language abcd. For each measure, the
system produces an instance of the rhythm inference prob-
lem. Some code in Python transforms it into the mixed lin-
ear program (*), which is then solved with Google OR tools4.
The obtained optimal solution of (*) is transformed into some
ABC code in which all rhythms are explicitly written. The
ABC code is then rendered into a music score image which is
the final output.

4 Interaction with the Tool
The user starts a score by choosing the instrument setting (pi-
ano solo, flute solo, choir, etc.). Then user can choose to
enter notes either by typing text from the computer keyboard,
or playing on a MIDI musical keyboard,

The user can edit the score in order to change the rhythm:
adding/removing some amount of space between notes,
adding/removing rhythm indication (dots, nuplets), change
the time signature (e.g. 4/4 to 3/4). The user sees the output
music score in real-time while making his/her modifications.

The tool is available on Github 5. The interested reader
may also watch videos about the tool, available from the
Github project.

5 Related Work
Rhythm inference has some link with automatic transcription
of music whose aim is to produce a music score from a human
performance. In the two problems – rhythm inference and
automatic transcription – the goal is to obtain a rhythm from
a somehow fuzzy input.

Music score editors often implement so-called quantiza-
tion for solving automatic transcription because it is simple
to implement: it consists in aligning musical notes/rests to
a predefined grid, typically based on a rhythmic subdivision.
There are two drawbacks: the human is forced to play with

3https://www.abcjs.net/
4https://developers.google.com/optimization
5https://github.com/francoisschwarzentruber/abcd

a regular and rigid tempo in order to hope obtaining a suit-
able music score; and often the resulting music score is too
complicated.

Several work have solved automatic transcription for over-
coming these two drawbacks. In [Takeda et al., 2002],
they model the problem as a hidden Markov model and do
Bayesian inference to guess the most probable rhythm. In
[Cemgil and Kappen, 2003], they use particle filters. In [Fos-
carin et al., 2019], the authors address the automatic tran-
scription problem by the mean of probabilistic context-free
grammars. The interested reader may refer to the survey
[Gouyon and Dixon, 2005] which is old but still informative.
Automatic transcription sometimes refer to the problem of
producing a music score from a raw audio signal [Benetos et
al., 2019].

However, automatic transcription is not about handling is-
sues about a succinct textual source code for representing a
music score.

• Unlike automatic transcription, our approach – rhythm
inference – takes care about partial specification, e.g.
‘the 3rd note is dotted’ (meaning that its duration is
among 3/2, 3/4, 3/8, etc.). Note that partial specifica-
tions are handled for free with a constraint satisfaction
problem formulation.

• In automatic transcription, the temporal information
comes from a real performance and thus is approxi-
mately the real rhythm. In rhythm inference, it does not
need to have the exact temporal information, but rather
relative information (e.g. this note is likely to be longer
than another note). Although the information is relative,
rhythm inference is able to guess the rhythm from the
positions of the measure bars.

We also note that constraint satisfaction has also been used in
other context in music: expressing constraints on pitch of the
note [Toro et al., 2016] (whereas we express constraints on
the durations of the notes).

6 Future Work
We have presented a new problem called rhythm inference
that takes as an input a partial description of a music score
and infer some consistent rhythm. Our methodology is math-
ematical simple: we formulate rhythm inference as a con-
straint satisfaction problem.

There are many ways to improve the tool and the language
abcd. Currently, each voice is treated separately. In the fu-
ture, we will also consider constraints between several voices:
typically notes aligned vertically should be played at the same
time. We also aim at handling properly anacrusis, i.e. mea-
sure that at generally at the beginning of a piece and whose
total duration is a fraction of the signature.

We also aim at handling preferences in the constraint sat-
isfaction problem [Dubois et al., 1996] (for instance, the pat-

tern is preferred to when the input is ambiguous
like ‘a b b ’).

Acknowledgements
We thank Charlotte Truchet for some helpful discussions.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8791

https://www.abcjs.net/
https://developers.google.com/optimization
https://github.com/francoisschwarzentruber/abcd

References
[Benetos et al., 2019] Emmanouil Benetos, Simon Dixon,

Zhiyao Duan, and Sebastian Ewert. Automatic music
transcription: An overview. IEEE Signal Process. Mag.,
36(1):20–30, 2019.

[Cemgil and Kappen, 2003] Ali Taylan Cemgil and Bert
Kappen. Monte carlo methods for tempo tracking and
rhythm quantization. J. Artif. Intell. Res., 18:45–81, 2003.

[Dubois et al., 1996] Didier Dubois, Hélène Fargier, and
Henri Prade. Possibility theory in constraint satisfaction
problems: Handling priority, preference and uncertainty.
Appl. Intell., 6(4):287–309, 1996.

[Foscarin et al., 2019] Francesco Foscarin, Florent Jacque-
mard, and Philippe Rigaux. Modeling and learning rhythm
structure. In Sound and Music Computing Conference
(SMC), 2019.

[Gouyon and Dixon, 2005] Fabien Gouyon and Simon
Dixon. A review of automatic rhythm description
systems. Comput. Music. J., 29(1):34–54, 2005.

[Takeda et al., 2002] Haruto Takeda, Naoki Saito, Tomoshi
Otsuki, Mitsuru Nakai, Hiroshi Shimodaira, and Shigeki
Sagayama. Hidden markov model for automatic transcrip-
tion of MIDI signals. In IEEE 5th Workshop on Multime-
dia Signal Processing, MMSP 2002, St. Thomas, Virgin Is-
lands, USA, December 9-11, 2002, pages 428–431. IEEE,
2002.

[Toro et al., 2016] Mauricio Toro, Camilo Rueda, and Car-
los Agón. Gelisp: A library to represent musical constraint
satisfaction problems and search strategies. Journal of the-
oretical and applied information technology, 2016.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8792

	Introduction
	Rhythm Inference
	Informal Description
	Formal Description
	Reduction to Mixed Linear Programming

	Tool Description
	Interaction with the Tool
	Related Work
	Future Work

