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Abstract
The development of the smart manufacturing trend
includes the integration of Artificial Intelligence
technologies into industrial processes. One exam-
ple of such implementation is deep learning mod-
els that diagnose the current state of a technologi-
cal process. Recent studies have demonstrated that
small data perturbations, named adversarial attacks,
can significantly affect the correct predictions of
such models. This fact is critical in industrial
systems, where AI-based decisions can be made
to manage physical equipment. In this work, we
present a system which can help to evaluate the ro-
bustness of technological process diagnosis models
to adversarial attacks, as well as consider protection
options. We briefly review the system’s modules
and describe useful applications. Our demo video
is available at: http://tinyurl.com/3by9zcj5.

1 Introduction
Correct Fault Detection and Diagnosis (FDD) allows to in-
crease the efficiency and safety of enterprise production pro-
cesses. Since the advent of Programmable Logic Controllers
(PLC), this problem is usually solved at the hardware level by
creating simple logical rules. However, this approach did not
allow analyzing the states of technological processes charac-
terized by complex behavior patterns. Nowadays, this issue
can be solved by smart manufacturing technologies such as
Artificial Intelligence (AI). AI and Deep Neural Networks
(DNN) allows to analyze sensor data, increasing the effi-
ciency in FDD task in supervised and unsupervised setting
[Lomov et al., 2021; Golyadkin et al., 2023]. However, there
are some restrictions on the widespread implementation of
such systems for industrial process management. One of the
restrictions is the vulnerability of DNN to adversarial attacks
(Fig. 1). There is a potential threat in which an attacker will
gain access to the data exchange system, and slightly chang-
ing the data, e.g., even by using domain knowledge [Ganeeva
et al., 2024], will make the DNN predictions incorrect [Pozd-
nyakov et al., 2024]. Such situation is unsafe if DNN is in-
volved in managing industrial equipment.

From a mathematical point of view, data from sensors is a
multivariate time series consisting of observations x1, ..., xn,
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Figure 1: Scenario of an attack on a large industrial process.

where xt ∈ Rd are sensor values at time t and d is the
number of sensors. Each timestamp is labeled by a vector
yt ∈ {0, 1}m+1 which indicates either the normal or one of
the m faulty states of the technological process. To predict
the state of a process at time t, a certain k-size time inter-
val is usually used. It consists of xt−k+1, ..., xt observations
that form a matrix Xt ∈ Rd×k. A machine learning model
can be represented as a function f : Rd×k → {0, 1}m+1 that
predicts the state by a given observation matrix.

An adversarial attack is a minimal malicious modification
of the input data in order to violate the correct prediction of
the model. During the attack, an adversarial sample X

′

t is
created such that: f(X

′

t) ̸= f(Xt), where X
′

t = Xt+N and
N ∈ Rd×k is a perturbation matrix. To make changes in the
data invisible to the human eye and other detection systems
(Fig. 2), its maximum shift can be constrained by the ϵ pa-
rameter: ∥Xt−X

′

t∥∞ ≤ ϵ. There are two types of adversarial
attacks: white-box and black-box. White-box attacks require
full access to a machine learning model to create a perturba-
tion matrix N using auxiliary information, such as gradients
of the backpropagation algorithm used in neural networks. In
contrast, black-box attacks use only the inputs and outputs of
a machine learning model. Potentially, white-box attacks are
more dangerous than black-box attacks.

In this paper, we present the Adversarial Attacks and De-
fenses Modeling in Industrial Processes (AADMIP) system,
which allows to evaluate the robustness of diagnosis meth-
ods against various types of adversarial attacks by applying
different defense techniques. The system consists of 5 mod-
ules. Each module is implemented in Python language using
popular packages for operating with data and machine learn-
ing, such as CatBoost [Prokhorenkova et al., 2018], PyTorch
[Paszke et al., 2017]. In Section 2 we briefly review the mod-
ules, in Section 3 we consider some useful applications.
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Figure 2: Difference between an original (blue) and an attacked (red)
sample of sensor data. The original sample is diagnosed as the nor-
mal state of the process, the attacked sample is diagnosed as Fault
#16 (Tennessee Eastman Process dataset, sensor xmeas 9).

2 System Overview
2.1 Dataset Module
Dataset Module allows to connect datasets for training and
testing diagnosis methods. Each dataset is represented by a
set of source files. df.csv contains the sequence of sen-
sor values at each point in time. label.csv contains the
state number of the industrial process, where 0 is the normal
state. train mask.csv contains the mask of the training
set, where 0 is not a training sample, 1 is a training sample.

Dataset Module allows downloading data from the internet
via a public link, unpacking and loading it into memory for
later processing. Currently, there are 3 public benchmarks
available in the system. rieth tep is a dataset of Ten-
nessee Eastman Process based on the dataset [Rieth et al.,
2017]. It contains 52 sensors, 21 states including 20 faults,
21000 runs, each run length is from 500 to 960 observations.
reinartz tep is a dataset of Tennessee Eastman Process
based on the paper [Reinartz et al., 2021]. It contains 52
sensors, 29 states including 28 faults, 2800 runs, length of
each run is 2000 observations. lessmeier bearing is a
dataset of an electromechanical drive system based on the pa-
per [Lessmeier et al., 2016]. It contains a single vibration
sensor, 3 states including 2 faults, 220 runs, length of each
run is 256000 observations. Custom datasets can be easily
added using the class inheritance.

2.2 Fault Diagnosis Module
Fault Diagnosis Module allows to manage the configuration
of fault diagnosis methods, such as the size of the sliding
window and model training parameters: batch size, learning
rate, number of training epochs. During training of a machine
learning model, data is supplied from Dataset Module. The
data available for training is determined using a train mask.
After training a model, testing on a test set and prediction by
an incoming sample of sensor data are available by Applica-
tion Programming Interface (API).

At this time, there are 5 models available in the mod-
ule: Linear model [Pandya et al., 2014], Gradient Boost-
ing [Prokhorenkova et al., 2018], Multi-Layer Perceptron
(MLP) [Khoualdia et al., 2021], Temporal Convolutional
Network (TCN) and Gated Recurrent Unit (GRU) [Lomov
et al., 2021].

2.3 Adversarial Attack Module
Adversarial Attack Module allows to manage an adversarial
attack parameters and perturb the input data to trick a diagno-
sis method. The module consists of white-box and black-box

attacks. Each attack requires setting the value of the maxi-
mum acceptable deviation of the perturbed data from the in-
put. The attacks use predictions of a diagnostic method to
attack the data.

Available attacks are: Random Noise [Zhuo et al., 2022]
(black-box), Fast Gradient Sign Method (FGSM) [Good-
fellow et al., 2014] (white-box), Projected Gradient De-
scent (PGD) [Madry et al., 2017] (white-box), DeepFool
[Moosavi-Dezfooli et al., 2016] (white-box), Carlini and
Wagner (C&W) [Carlini and Wagner, 2017] (white-box), Dis-
tillation Black Box [Cui et al., 2020] (black-box).

2.4 Defense Module
Defense Module allows to manage parameters of defense
methods. During defense, a defense method encapsulates
the diagnosis method and can be used for testing and predic-
tion in the same way as the diagnosis method. In this way, a
defense method becomes indistinguishable from a diagnosis
method from attacker’s point of view, allowing defense to be
performed invisibly.

Available defense methods are: Adversarial Training
[Goodfellow et al., 2014], Defensive Distillation [Papernot
et al., 2016], Data Quantization [Xu et al., 2017], Gradient
Regularization [Finlay and Oberman, 2021].

2.5 Visualization Module
Visualization Module allows to run an interactive dashboard
based on Bokeh [Jolly, 2018] to analyze the performance of
adversarial attacks and defenses. To run the dashboard, a set
of prepared files is used, where each file represents a com-
bination of a selected dataset, diagnostic method, adversarial
attack, and defense method. Each file contains an attacked
data and the predicted process state in CSV format.

Currently all combinations are supported for the
rieth tep dataset; diagnostic methods: Linear model,
MLP, GRU; adversarial attacks: Noise, FGSM, C&W;
protection methods: Adversarial training, Quantization,
Regularization.

3 Use Cases
3.1 Benchmarking Fault Diagnosis Methods
To decide on the effectiveness of a particular defense method,
it is necessary to compare their quality under different ad-
versarial attacks for different diagnosis methods. For ex-
ample, let us consider a diagnosis methods based on MLP,
GRU, TCN neural networks. A model trained on the
reinartz tep dataset is subjected to C&W attack with
different levels of distortion of the original signal. We mea-
sure the quality of each diagnosis method at each distortion
level and each defense method. The results obtained (Fig. 3)
show that Gradient Regularization is suitable for defense of
TCN, while it is significantly less effective for other models.
In addition, it can be observed that Data Quantization shows
the best protection for all models and for almost all distortion
levels. The only defense that shows better performance is Ad-
versarial training at distortion levels close to 0.1. From this
we can conclude that Adversarial training is best for cases
when we expect an attack at 0.1 level, for all other cases Data
Quantization is better.
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Figure 3: Results of benchmarking C&W attack with different distortion level of attacking MLP, GRU, TCN.

3.2 Interactive Dashboard

After preparing data for visual analysis, we can run an inter-
active dashboard to analyze the results. On the top left there
are switches for diagnosis methods, adversarial attacks, and
defense methods (Fig. 4). There are also sliders for select-
ing a unique process run and sensors displayed below. On the
top right there is a scheme of the process. In the center we
see current sensor values for a sliding window of size 30. On
the left are the original values, on the right the attacked val-
ues. The data is updated dynamically, simulating real-time
equipment monitoring. At the bottom, the real and predicted
process state are available for analysis. By switching attacks
and protection methods, we can analyze how sensor values
and model predictions change.

3.3 Defending Fault Diagnosis Using API

The developed API allows to use diagnosis methods and de-
fense methods available in the system both in isolation and
together with each other. Let us consider an example of iso-
lated use of Data Quantization defense method. Suppose
there is some diagnosis method that is already used in the
process monitoring system. To connect the Defense Module,
we need to add this diagnosis method as a child class of the
base model, implementing the interface of training and pre-
diction. After that, when creating a Data Quantization object,
we need to pass a diagnosis method in the initialization pa-
rameters. When the object is created, the model is retrained
taking into account Data Quantization. After training, the ob-
ject can be used for prediction using the predict method,
which takes a numpy [Harris et al., 2020] array of dimension
[B×L×D], where B is the size of the batch of data, L is the
size of the sliding window, D is the number of sensors. An
overview of the defending interface is shown in Fig. 5.

4 Conclusion

When integrating AI into industrial processes, it is necessary
to at least estimate the existing potential threats. In this demo
we present the AADMIP system that simulates adversarial at-
tacks on sensor data and evaluate defense methods. The sys-
tem has an open license for freely commercial use and can be
integrated into various industrial processes through an API.

Figure 4: Interactive dashboard.

Figure 5: Overview of the defending API. At the top: a wrong pre-
diction received by the predict method of an unprotected model.
At the bottom: a correct prediction is received from the predict
method of a defense method that operates on a diagnosis model.
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