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Abstract
We present AESim, a data-driven Aircraft Engine
Simulator developed using transformer-based con-
ditional generative adversarial networks. AESim
generates samples of aircraft engine sensor measure-
ments over full flights, conditioned on a given flight
mission profile representing the flight conditions. It
constitutes an essential tool in aircraft engine digital
twins, capable of simulating their performance for
different flight missions. It allows for comparison
of the behavior of different engines under the same
operational conditions, simulation of various scenar-
ios for a given engine, facilitating applications like
engine behavior analysis, performance limit identifi-
cation, and optimization of maintenance schedules
within a global Prognostics and Health Management
strategy. It also allows missing flight data imputa-
tion and addresses confidentiality concerns by gen-
erating synthetic flight datasets that can be shared
for public research purposes or data challenges.

1 Introduction
Amidst current technological breakthroughs, numerous indus-
tries progressively adopt digital twins to build digital represen-
tations of their real-world systems. Digital twins are detailed
replications of the physical world within interconnected digital
models. They assist industries in refining decision-making,
enhancing health monitoring, optimizing process design, and
strengthening quality control, among other areas [Thelen et
al., 2022; Errandonea et al., 2020].

The analysis and simulation of aircraft engine behavior
have garnered significant attention in the aeronautical industry
[Wang et al., 2017; Kim et al., 2020], primarily due to its per-
formance, maintenance, safety, and sustainability implications.
In the context of aircraft engines, sensors equipped within
the engines capture so-called Continuous Engine Operational
Data (CEOD) [Forest et al., 2018], which are multivariate
time series (MTS) over entire flights. These measurements are
vital for Prognostics and Health Management (PHM) applica-
tions [Coussirou et al., 2022; Lacaille and Langhendries, 2022;
Forest et al., 2020]. However, missing data may occur due
to sensor or data transfer failures or delays, leading to incom-
plete or biased information. Furthermore, it is challenging for

aerospace companies to collaborate with academic partners
from university laboratories to exploit this data in research
projects, as it remains the property of airlines and is subject
to contractual obligations, preventing them from being ex-
changed. Academic research requires opening the data for
method validation and reproducibility. At Safran Aircraft En-
gines, we demonstrated the effectiveness of leveraging CEOD
collected from the engines after each flight to build a represen-
tative model of the engine using conditional generative models.
Subject to flight conditions and control settings, this digital
twin tool makes it possible to simulate the engine’s behavior
if it had carried out the simulated flight mission. It makes
it possible to provide CEOD of realistic simulated flights as
performed by actual engines.

In this demonstration, we present AESim, an Aircraft En-
gine Simulator capable of reproducing the behavior of a real
aircraft engine by replicating the complex engine dynamics. It
addresses the challenges of missing data and industrial confi-
dentiality constraints by generating realistic, simulated engine
data for hypothetical missions. This capability enables the
comparison of various engine behaviors under identical condi-
tions. It provides valuable datasets for in-house and academic
research, sidestepping confidentiality concerns and allowing
for the development of robust PHM methods without rely-
ing on sensitive real-world data. AESim is based on a novel
framework implementing our new architecture for Multivariate
Time Series Conditional Generative Adversarial Nets (MTS-
CGAN) [Madane et al., 2023; Madane and Lacaille, 2023;
Mirza and Osindero, 2014] and extending it to simulate the
behavior of aircraft engines.

2 Case Study
The simulator is trained on continuous engine data recorded by
aircraft engines belonging to the same fleet. Onboard sensors
collect multiple measurements at different frequencies. We
process them at a uniform frequency of 1 Hz. Throughout
this demo, we present the generation of three parameters:
Low-pressure rotor speed (N1), temperature at the entry of
the combustion chamber (T) and Exhaust Gas Temperature
(EGT), based on five external condition parameters, as shown
in Figure 1, representing the simulated flight mission profile
which are the ambient temperature, altitude, Mach number,
Throttle Lever Angle and a boolean variable (not represented
on the figure) indicating whether the engine is running or not.
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Figure 1: AESim, our proposed data-driven Aircraft Engine Simulator framework. CEOD: Continuous Engine Operational Data. N1:
Low-pressure rotor speed. T: temperature before combustion chamber. EGT: Exhaust Gas Temperature.

3 System Framework
3.1 Methodology
We present an overview of our simulator framework in Figure
1, where a mission profile is used as input and the gener-
ated CEOD parameters represent the output. The workflow
involves several steps:

Standardization of the input. The raw multivariate time
series data are normalized by subtracting the mean and divid-
ing by the standard deviation of each feature to ensure equal
contribution to the analysis.

Temporal Phase Partitioning. Continuous Engine Data
can be extremely long, have variable lengths, and have dif-
ferent phases, resulting in different engine operational states.
Multivariate time series are divided into distinct phases re-
flective of the multiple temporal dynamics within each flight
(before, during, after Cruise). This partitioning facilitates the
isolation of periods that exhibit homogeneous characteristics,
enabling more targeted modeling in subsequent steps.

Segmentation within Phases. Each identified phase is
further divided into fixed-duration segments, with each seg-
ment spanning 300 seconds and with a 20-timesteps overlap
between consecutive segments. This segmentation strategy
facilitates processing time series data with variable lengths,
including extremely long flights, by eliminating restrictions
on the input shape. By dividing the data into manageable
segments, the approach ensures that the simulator can accom-
modate sequences of any length without pre-specifying a fixed
input dimension. This flexibility is crucial since flight data
have diverse temporal scales, and their length cannot be pre-
determined. The selection of segment length was informed
by expert recommendations, reflecting a careful consideration
of the engine’s response to local physical phenomena, which
typically is, at most, a five-minute duration. Additionally, this

decision was guided by a balance between the retention of
sufficient information to enable effective data generation and
the computational feasibility, particularly due to the quadratic
complexity of self-attention mechanisms with respect to the
sequence length, making it computationally expensive for long
sequences. This approach ensures that each segment is opti-
mally sized to capture relevant dynamics without imposing
undue computational demands, thereby maintaining the in-
tegrity of the generation process while accommodating the
practical constraints of data processing.

Phase-wise and Segment-wise Data Generation. Data
generation is performed using phase-specific models for each
phase and corresponding segments. These models are de-
signed to generate multivariate time series that mimic the real
engine’s statistical characteristics and temporal behavior as
a response to the mission profile events—more details about
the architecture of the generative models are in the follow-
ing section. The conditional aspect of the generation is a
critical component of our methodology. Each window was
not generated separately; instead, the generation of a given
window considered the previously generated window. This
approach ensured continuity and coherence in the generated
data, preserving the temporal dependencies.

De-normalization of the Generated Data. Re-applying
the original mean and standard deviation values to the gener-
ated data, effectively returning it to its original scale.

Concatenation of Sequentially Generated Segments. The
final step involves concatenating all sequentially generated
segments to form a complete multivariate time series where
each variable represents a CEOD parameter.

3.2 MTS-CGAN Architecture
This model generates context-dependent multivariate time
series data by incorporating a conditional layer into its gen-
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Figure 2: Architecture of the Generator and the Discriminator

eration mechanism. It employs a generator, denoted as G
(refer to Figure 2a), alongside a discriminator, D (see Figure
2b) for the training. The enhanced MTS-CGAN framework
introduces conditioning not only based on the given context
but also leverages the segment generated immediately prior.
Here, the context refers to the mission profile, represented
as a multivariate time series. As detailed in Section 3.1, the
generation process for any specific window considers the win-
dow produced beforehand. This approach guarantees a seam-
less transition between consecutive data segments, effectively
maintaining the temporal correlations inherent in the original
multivariate time series.

The conditional generator (G) consists of two distinct
components: The first component encodes the context of the
simulated flight. This requires two inputs: a noise vector of
dimension dz and the encoded context of dimension dy. The
noise vector is encoded into a latent dimension space dy , then
concatenated across the dimension known as ’channels.’ This
latent space’s dimension is a data-dependent hyperparameter.
We then apply linear transformations to the concatenated vec-
tors to obtain a vector with a size equal to the target sequence
length and dc channels, where dc must be tuned. Finally, we
use a positional embedding vector to encode each element’s
position. It helps capture the sequence’s order. Multiple con-
secutive blocks of the context encoder then process the final
vector. The context encoder mirrors a conventional trans-
former encoder [Vaswani et al., 2017] where the multi-head
self-attention layer extracts contextual inter-dependencies be-
tween the generated signal and the provided context. The
second component of the conditional generator refines the
generation process to incorporate information from the previ-
ously generated window. It takes the previous window as input
and generates positional-aware embeddings from it. These

embeddings are then channeled into the Adjustment Encoder.
This encoder consists of two main layers. First, a multi-head
self-attention layer processes the embeddings to extract fea-
tures from the previously generated window. Then, a separate
multi-head attention layer is used, with the query derived from
the output of the self-attention layer, while the key and value
are derived from the output of the generator’s first component.
This combination allows the generation process to incorporate
the context and ensure continuity in the generated sequence.
We note that the Adjustment Encoder block is iteratively re-
peated N times, where N is a tunable hyperparameter that
should be adjusted according to the specific requirements of
the generation task. The final output is processed by a convo-
lutional layer with a kernel size of (1,1), where the number of
output channels equals the target dimension.

The conditional discriminator (D) is designed to distin-
guish between real and generated multivariate time series data.
It processes either real or generated CEOD inputs, each ac-
companied by the mission profile. Initially, it concatenates the
CEOD and the profile mission multivariate time series along
the channel dimension, followed by a linear transformation
to produce an embedding. This embedding is then segmented
into multiple patches, each with its positional encoding. These
segmented patches are then input into the consecutive layers
of the Transformer’s encoder. A binary classifier leverages
the final embedding to assess the likelihood of the input being
real or generated, assigning a score to indicate this distinction.
The architecture of this mechanism is illustrated in Figure 2b.

We use the Least Squares GAN (LSGAN) loss [Mao et
al., 2017], replacing the standard GAN’s [Goodfellow et al.,
2020] cross-entropy loss with a least squares loss for better
training stability and convergence. An extra loss term is added
to the generator to ensure seamless transitions in flight se-
quences by aligning overlapping segments of 20 data points
each, preserving sequence continuity without data repetition.
Both discriminator and generator parameters are optimized to
minimize their respective loss functions, LD and LG.

LD =
1

2
Ex,y∼pdata

[
(D(x, y)− 1)2

]
+

+
1

2
Ez∼pz

[
(D(G(z, y), y))2

]
(1)

LG =
1

2
Ez∼pz

[
(D(G(zt, yt), yt)− 1)2

]
+

+ ∥G1:20 (zt, yt)−Gend-19:end (zt−1, yt−1)∥2 (2)

4 Conclusion
In this demo, we introduced AESim, a novel aircraft engine
simulator framework using a Transformer-based architecture
to model multivariate time series in conditional generation
tasks. The model learned the distribution of observed data for
each context simultaneously. Self-attention mechanisms effec-
tively captured the conditional generation aspect, maintaining
the complex dynamics of the engine parameters. Although in
this demonstration, we have focused on a single complex air-
craft engine use case, it is interesting to note that the approach
can be extended to other industrial use cases. The system is
being tested internally at Safran’s DataLab and there are plans
to test it in other company departments.
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