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Abstract

This paper introduces AUTODRAITEC, a novel
AI-based system that is deployed on the road
infrastructure to control the driving of Connected
and Autonomous Vehicles (CAVs). For this
purpose, we present a convincing proof of concept
that demonstrates the effectiveness of our solution.
The system deploys a hybrid machine learning
approach comprised of a supervised learning
classifier to characterize the behaviors of human
drivers, with a deep reinforcement learning policy
to provide speed recommendations for CAVs. This
system is implemented using perception sensors
and an industrial computer (IPC), which are
intended to be deployed on the road infrastructure.
Using a 1:18 scale testbed that faithfully replicates
real-world driving scenarios, we demonstrate that
AUTODRAITEC improves driving safety and
efficiency while preserving the traffic flow rate.

1 Introduction
Although the potential of CAV technologies in improving
traffic safety and efficiency, major technical challenges lock
this potential. Indeed, current autonomous driving sys-
tems suffer from limited perception capabilities (i.e., lim-
ited range, limited accuracy, presence of blind spots, etc.)
and limited computational power (i.e., cost-effective em-
bedded calculators)[Knight, 2021]. Furthermore, the co-
existence of CAVs with human-driven vehicles [Statista,
2022], which could not be controlled, add complexity and
uncertainty for those autonomous driving systems. Regard-
ing these challenges, the road infrastructure has become a
key enabler for reaching a higher level of autonomy. In-
deed, systems on the road could provide extended percep-
tion and computational-power capabilities. The extended
perception capabilities [Carreras et al., 2018] are achieved
thanks to some factors such as higher-altitude sensors mount-
ing, Birds-Eye-View (BEV) installation [Liu and Niu, 2021],
geo-stationary calibration, etc., while a higher computational
power could be guaranteed using multi-access edge comput-
ing (MEC) to offload an estimated 80% of autonomous driv-
ing calculations [Liu et al., 2017]. Furthermore, the road

Figure 1: Illustration of AUTODRAITEC system and the use case.

infrastructure is stationary; hence, it could share its percep-
tion and calculation functionalities with all road participants,
even at low CAVs penetration rate. Many research projects
have shown that the infrastructure-based autonomous driv-
ing is safer, more efficient, and more economical [Liu, 2022;
Yuming et al., 2017]. The most recent development in this
direction includes a merging support information provision
system, which provides only cooperative sensing information
for vehicles without control [NILIM, 2023], and the Transi-
tion Areas for Infrastructure-Assisted Driving project, Tran-
sAID, funded by the European Union [Coll-Perales et al.,
2022]. Although there is increasing interest and standard-
ization efforts [Carreras et al., 2018], questions on how road-
infrastructure systems could be designed and used to support
autonomous driving of CAVs are still awaiting answers.

The objective of this paper is to demonstrate
AUTODRAITEC1, a first and unique AI-based system on the
road infrastructure to support the driving of connected and
autonomous vehicles (see Fig. 1). The system is built upon
a hybrid machine learning approach comprised of (1) a su-
pervised learning classifier that characterizes the behaviors of
human-driven vehicles and (2) an actor policy that provides
speed recommendations for CAV. In order to test and validate

1https://youtu.be/rq4seJzfxaA
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the performance of the system, we also designed a 1:18 scale
testbed that replicates real-world driving scenarios with high
fidelity, as shown in Figure 1. To the best of our knowledge,
this is the first AI-based infrastructure-assisted driving system
that is implemented and experimented on a scaled testbed.

2 Use Case
The system is composed of a sensors module (LiDAR and
Camera), which is mounted on the off-board infrastructure,
and an industrial computer, which is deployed on the edge,
as illustrated in Figure 1. Furthermore, a 1:18 scale testbed
is used to test and validate our system, as shown in Figure 1.
This latter allows for the mitigation of safety and cost risks
when experimenting and validating driving systems. Our
proof of concept is used to provide speed recommendations
for a 1:18 scale CAV to perform highway on-ramp merging.
The motivations for using this use case are mainly related
to the complexity of driving tasks that are required, the high
number of collisions that occur [NHTSA, 2003], and the con-
siderable rate of congestion associated with on-ramp merg-
ing zones [FHWA, 2005]. Using a reduced 1:18 scale ratio,
we faithfully replicated the geometry of a real-world highway
on-ramp located on a segment of Interstate 80 in Emeryville
(San Francisco), California, USA, as shown in Figure 1. Fur-
thermore, the traffic conditions were extracted from the real-
world traffic dataset NGSIM [USDOT, 2022].

3 System Design and Architecture
AUTODRAITEC platform is illustrated in Figure 2. The sys-
tem is composed of:
• Sensors Module: It comprises two types of sensors: Cam-
era and LiDAR [LSLiDAR, 2024]. For objects detection, the
Camera uses the framework YOLOv5 [Zaidi et al., 2022]
while the LiDAR uses, for clustering, CenterPoint [Yin et al.,
2021] with PointPillars [Lang et al., 2019].
• Fusion Module: A fusion method, with deep learning and
Bayesian statistics, is used to improve the accuracy and clas-
sification rate compared to using a single sensor individually.

The detection accuracy reaches a level of 98% [LSLiDAR,
2024].
• Features Extraction Module: It uses the detected objects
information to extract input features for the Driver Intention
Model, DIM, and input state, s, for the actor policy, πθ(s).
• Driver Intention Model (DIM): It is a supervised classi-
fier that provides prediction on the intention (i.e., behavior)
of human-driven vehicles. To cite, the intention to ‘yield’
or to ‘not yield’ is used for the scenario of highway on-ramp
merge. It was shown that this auxiliary model provides mean-
ingful input state for the actor policy [Kherroubi et al., 2022].
The accuracy of this model in our use case reaches 99%.
• Actor Policy (πθ(s)): The actor policy provides speed rec-
ommendations for CAV. This policy is trained using a Twin
Delayed Deep Deterministic Policy Gradient (TD3) [Fuji-
moto et al., 2018] which belongs to the actor-critic algorithms
for continuous action spaces.

For test and validation purposes, a 1:18 scale testbed sys-
tem is integrated, and its architecture is also shown in Fig-
ure 2. It is composed of:
• Traffic Generation Module: It uses traffic data from a real-
world dataset to generate traffic conditions that mimic real-
istic scenarios [USDOT, 2022]. Specifically, it extracts the
statistical features from real datasets, such as the statistical
distributions of speed and the traffic flow rate.
• Traffic Simulator (Software-In-the-Loop (SIL)): It uses
the traffic information as an input to simulate the behaviors
of vehicles and the evolution of traffic at a given driving sit-
uation and road geometry. The simulator replicates the mo-
tion of CAV that is controlled by AUTODRAITEC platform,
while it provides motions to Human-Driven Vehicles, HDVs,
through a parameterized model that emulates their behaviors.
• 1:18 Scale HDVs: A miniature Ackermann-steering vehi-
cles with a 1:18 size ratio compared to real-world vehicles
[Waveshare, 2023]. It comprises two main components: (1)
Path tracking module: it receives motion references to emu-
late human behaviours and uses a PID controller to provide
longitudinal control; (2) Road following module: it com-
prises an integrated Camera and a trained ResNet18 network

Figure 2: System design and architecture.
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(a) Accident case with cooperative driver

(b) Accident case with aggressive driver

Figure 3: Demonstration of an accident case with two types of drivers: (a) cooperative driver, and (b) aggressive driver.

[He et al., 2015] to emulate human-vision and uses a PD con-
troller to provide lateral control.
• 1:18 Scale CAV: It is similar to the 1:18 scale HDVs ex-
cept that it uses speed recommendation provided by AU-
TODRAITEC platform to perform longitudinal control.

4 Demonstration Overview
In an initial stage, we evaluated the performance of our sys-
tem through simulation. Over 10,000 testing episodes of
highway on-ramp merging, where the AUTODRAITEC sys-
tem provides speed recommendation for CAV at merge lane
(i.e., longitudinal control), safety and efficiency metrics were
assessed. In terms of traffic safety, the simulation results in-
dicate that the system could improve the safety distance with
preceding and following vehicles on the highway on-ramp by
30%, eliminate collisions, and reduce the number of emer-
gency brakings. Regarding traffic efficiency, the results also
demonstrate that the system could enhance the average merg-
ing speed by 15% while maintaining the traffic flow rate.

To demonstrate our proof of concept, we faithfully repli-
cate an accident case, which is the worst case scenario among
the 10,000 testing episodes, on the 1:18 scale testbed. For
consistency, and to check the robustness of our system,
the accident case was replicated for two different types of
drivers at the main highway: cooperative and aggressive (see
Figs. 3.(a)-i and 3.(b)-i, respectively). The AUTODRAITEC

system is then used to provide speed recommendations for
CAV in these two accident-like scenarios. When the driver
is cooperative (see Fig. 3.(a)-ii), DIM predicts their inten-
tion to ‘yield’ early at the entry to the merge lane. Conse-
quently, πθ(s) provides recommendations of accelerating to
merge before the cooperative driver. Conversely, for the ag-
gressive driver (see Fig. 3.(b)-ii), DIM predicts an intention to
‘not yield’ and, therefore, πθ(s) provides recommendations
of decelerating, rather than accelerating, to merge after the
aggressive driver. Regardless of the driver type or their level
of aggressiveness, the AUTODRAITEC system consistently
succeeds in avoiding accidents, maintaining safety distances,
and executing successful merges at the highway on-ramp.

5 Conclusion
We presented AUTODRAITEC, an AI-based system that
is deployed on the road infrastructure to support the au-
tonomous driving of CAV. This system improves driving
safety and efficiency, while preserving traffic flow rate. We
also presented an integrated testbed architecture that allows
to test and validate our system safely, cost-effectively, and
faithfully. Our proof of concept has shown the ability of our
system to prevent accidents and preserve appropriate safety
distances while enhancing the driving speed.

As future perspectives, the system should be scaled to fur-
ther driving scenarios and use cases.
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