Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

Plug-and-Play Unsupervised Fault Detection and Diagnosis for
Complex Industrial Monitoring

Maksim Golyadkin'*, Maria Shtark?, Petr Ivanov?, Alexandr Kozhevnikov?, Leonid
Zhukov®, Ilya Makarov*?®
'HSE University
2Al Talent Hub, ITMO University
SBCG X
4AIRI

ISP RAS Research Center for Trusted Artificial Intelligence
golyadkin @airi.net

Abstract

Today industrial facilities are equipped with lots of
sensors throughout all the production line for mon-
itoring means. Gathered data can be used to de-
tect and predict failures; however, manual labeling
of large amounts of data for supervised learning
is complicated. This paper introduces an innova-
tive approach to unsupervised fault detection and
diagnosis tailored for monitoring industrial chem-
ical processes. We showcase the efficacy of our
model using two publicly accessible datasets from
the Tennessee Eastman Process, each containing
various faults. Furthermore, we illustrate that by
fine-tuning the model on a limited amount of la-
beled data, it achieves performance close to that
of a state-of-the-art model trained on the entire
dataset.

1 Introduction

Specialized equipment and technology are utilized in chem-
ical processing plants to facilitate the manufacturing pro-
cess. A closed-loop control system is commonly employed
to ensure the stability of production by automatically mak-
ing small adjustments. Process lines are extensively instru-
mented with sensors that provide real-time data to monitor-
ing and control systems. Despite these measures, unexpected
process deviations can sometimes occur, resulting in reduced
process yield, interruptions, and potential equipment damage
or failure.

Early fault detection and diagnostics are crucial compo-
nents of a process monitoring system. A fault is commonly
defined as a deviation of a process variable outside the ac-
ceptable production range [Venkatasubramanian et al., 2003].
Detecting faults early enables the selection of appropriate re-
covery procedures to restore the process to its normal operat-
ing state.

Fault detection and diagnostics (FDD) techniques typically
use a supervised approach, where you have to label all sensor
data for each time interval with the corresponding process
state. However, manual labeling of extensive data sets can
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be costly and challenging in industrial environments. In re-
sponse to this issue, unsupervised FDD methods have been
put forward as an alternative approach. These unsupervised
methods reduce the dimensionality of sensor data and utilize
clustering techniques to group samples based on their process
states.

Recently, various deep clustering techniques have been
proposed for unsupervised image classification [Ji et al.,
2019; Hu et al., 2017; Huang et al., 2020; Li et al., 2021;
Grechikhin and Savchenko, 2019; Savchenko et al., 2022,
Niu et al., 2020]. Nevertheless, these approaches utilize
feature extractors that primarily focus on low-level features,
overlooking the potential high-level characteristics hidden
within the input data.

We introduce a new unsupervised FDD method that uti-
lizes deep learning techniques to achieve high accuracy with
chemical sensor data. Our method combines SSL pretraining
and Deep Clustering to enhance performance in this domain.

Our approach outperforms contemporary unsupervised
FDD methods when evaluated using multiple clustering met-
rics on the Tennessee Eastman Process (TEP) benchmarks.

2 Related Work

In recent times, there has been a surge in data-driven tech-
niques aimed at detecting and diagnosing faults in industrial
processes [Lei et al., 2020; Taqvi et al., 2021; Bi et al., 2022;
Lomov et al., 2021a; Pozdnyakov et al., 2024]. The majority
of these methods rely on extracting features from raw histori-
cal data. Nevertheless, data captured by industrial sensors of-
ten exhibit high redundancy and intercorrelation, posing chal-
lenges for many data-driven approaches.

Fault detection and diagnosis typically follow two broad
approaches: supervised and unsupervised. In the supervised
approach, a labeled dataset is necessary, enabling the trained
model to differentiate between observed abnormal states in
the process history. However, this dataset often lacks rep-
resentation of all potential faults, prompting the exploration
of unsupervised methods. Unlike supervised methods, un-
supervised techniques are not limited to a predefined set of
observed and labeled faults.
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In the past few years there have been a lot of studies us-
ing modern techniques for fault detection and diagnosis prob-
lems: mostly deep neural networks of different types [Zhang
and Qiu, 2022; Bi and Zhao, 2021; Golyadkin et al., 2023;
Lomov et al., 2021a; Kovalenko et al., 2022] and other.

2.1 Self-Supervised Learning for Time Series

Self-supervised learning techniques for time series process-
ing can be divided into two main categories. The first
group utilizes pretext tasks tailored to leverage the struc-
tural characteristics inherent in time series data. Conversely,
methods within the second group adopt general represen-
tation learning strategies applicable to diverse data types,
exhibiting superior performance across a spectrum of ma-
chine learning tasks in recent studies [Brown et al., 2020;
Dai et al., 2021].

2.2 Deep Clustering

Basic deep clustering techniques rely on applying traditional
clustering algorithms to features extracted using a pretrained
feature extractor [Huang et al, 2014; Xie et al., 2016;
Yang et al., 2017; Li et al., 2018]. These models can be
trained using unlabeled data, operating by extracting seman-
tically significant features from raw data.

Alternatively, there are models trained using end-to-end in-
direct loss functions to map inputs to cluster indices [Ji ef al.,
2019; Hu et al., 2017; Huang et al., 2020; Li et al., 2021;
Niu et al., 2020]. However, a notable drawback of this ap-
proach is the utilization of the same loss function for both
feature extraction and class assignment training phases. Van
Gansbeke et al. introduced the SCAN algorithm [Van Gans-
beke et al., 20201, which conducts clustering by ensuring the
similarity of cluster predictions for neighboring objects, uti-
lizing proximity calculated within the embedding space of the
pretrained feature extractor.

3 Model Description

Our method aims to generate clustering results for a given
set of unlabeled multivariate time series samples X =
X1,...,Xn, where each X; is a matrix in RE*P denoting
sample length L and sensor count D. Corresponding to X', we
have a set of labels Y = y1,...,yn, where y; € 1,...,Q,
but these labels are unavailable during training. Our model
comprises two components: a large feature extractor F and a
small clustering network C. Initially, the feature extractor un-
dergoes pretraining using self-supervised learning methods,
and the cluster count is determined through visual analysis of
the latent space distribution. Subsequently, the clustering net-
work and feature extractor are jointly trained using the SCAN
loss function [Van Gansbeke et al., 2020], using information
from the embedding space regarding neighboring data points.

Self-supervised learning techniques are employed to em-
power our model in discerning distinct samples without rely-
ing on ground truth labels. Through these methodologies, the
neural network delves into the intrinsic structure of the data.
We utilize a feature extractor built upon the Transformer ar-
chitecture [Vaswani et al., 2017], which comprises four com-
ponents: an encoder 7, a sequential pooling layer P, a pro-
jection head H, and a reconstruction head R.
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Figure 1: Overview of our method.

To create masked samples from a given sam [}Jle X €
REXP | we generate a binary mask M € 0,12%P and per-
form element-wise multiplication, resulting in X=X ® M.
The loss function employed for this task is MSE, calculated
exclusively for the masked values:
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where B is the batch size, and [ and d correspond to the num-
ber of timestamps and the number of sensors, respectively.

Training proceeds by minimizing the NT-Xent loss [Chen
et al., 2020] (normalized temperature-scaled cross entropy).
Initially, a minibatch of B samples is randomly sampled and
augmented to yield a minibatch of 2B samples. Conse-
quently, for each sample, there exists one positive pair and
(2B — 2) negative pairs. The NT-Xent loss encourages the
distance between positive pairs to be smaller than that be-
tween negative pairs. Specifically, for the positive pair (¢, ),
the loss is defined as follows:

o exp(sim(z;, z;)/7)
49 = TS Tk £ explsim(za m)/T)

where z;, z;5, 2z, € R¥ represent the outputs of the projection
head, sim(u,v) = u'v/(||ul| : ||v||]) denotes the cosine
similarity, and 7 denotes the temperature parameter. The final
loss Lon: 18 computed across all 2B positive pairs.

The self-supervised learning (SSL) pretraining spans over
FE epochs, following this iterative process:

1. Randomly sample a minibatch of size B.
2. Apply weak augmentation « and strong augmentation 3.

3. Independently generate a binary mask M, for each sam-
ple.

4. Reconstruct the masked values and compute reconstruc-
tion loss.

5. Generate embedding for the masked samples and calcu-
late the NT-Xent loss.

6. Compute total loss as a weighted sum of the two above.

Clustering organizes samples based on their similarity, ef-
fectively distinguishing various process states even without
the presence of ground truth labels. Prior to training, a pre-
processing step known as nearest neighbors mining is neces-
sary. For each sample X;, we identify its K nearest neighbors
Nx, within the embedding space of the feature extractor.

The nearest neighbors mining algorithm is as follows:
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Figure 2: Evolution of clusters during our model training.
1. Randomly shuffle the training dataset.
2. Split the dataset into T chunks of equal size.
3. For each X;, the nearest neighbors are found

within the chunk Xj it belongs to: Ny, =
NearestNeighbors(X;, X).

The clustering network C is structured as a 2-layer Multi-
Layer Perceptron (MLP), with intermediate BatchNormaliza-
tion and ReL.U activation function, and final softmax activa-
tion, C: R — RM. The learning mechanism is engineered
to ensure consistent label prediction distributions for both the
sample and its neighboring instances. In sum, the loss com-
putation proceeds as follows:

B
Lscax = —3 Y log (CFX),CFEIN )+ @)

i=1

B
/ !/ ]‘
FAent H(C'), where C' = E;cwxm )

and (-, -) denotes the dot product, A.,,; is entropy loss weight,
XN s the neighbour randomly sampled from N,, and
H(C’) denotes the entropy over discrete distribution C’.

4 Tennessee Eastman Process

The Tennessee Eastman Process (TEP) is a widely recognized
benchmark used to evaluate process control and FDD meth-
ods, originally developed by the Eastman Chemical Com-
pany. [Downs and Vogel, 1993]. There are two separate
numerical simulators for the TEP process. An extended ver-
sion of this dataset (hereafter TEPg;e,) Was first introduced
and employed in [Rieth ef al., 2018]. The second simu-
lator uses distinct control schemes.[Lawrence Ricker, 1996;
Ricker and Lee, 1995; Larsson et al., 2001] and is available
at the Tennessee Eastman Challenge Archive. The extended
dataset (hereafter TEPgcker) generated with this model is pre-
sented in [Reinartz et al., 2021].

PCA  ST-CatGAN ConvAE Ours

Detection TPR 0.36 0.30 0.48 0.84
Detection FPR 0.00 0.00 0.00 0.00
CDR 0.79 0.32 0.93 0.92
ADD 113.95 102.63 49.95 5.21

Table 1: Aggregated detection and diagnosis metrics evaluated on
TEPRici in the unsupervised setting.
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PCA ST-CatGAN ConvAE Ours

Detection TPR 0.36 0.36 0.64 0.87
Detection FPR 0.00 0.00 0.00 0.00
CDR 0.95 0.89 0.89 0.96
ADD 111.49 135.04 52.28 28.47

Table 2: Aggregated detection and diagnosis metrics evaluated on
TEPricker in the unsupervised setting.

5 Evaluation Metrics

We conduct FDD on multivariate time series data X =
X1,..., Xn, where each X is a matrix in R“*? represent-
ing sample length L and sensor count D. Samples are gen-
erated using sliding windows of size L. In our experiments,
window size is set to 100 and step size is set to 1. For datasets
TEPRietn and TEPRjcker, this corresponds to 300 minutes and
3 minutes, respectively.

For FDD evaluation, we compare ground truth labels with
predicted ones using label matching. Metrics include True
Positive Rate (TPR), False Positive Rate (FPR), and Correct
Diagnosis Rate (CDR). Detection TPR and FPR are calcu-
lated for each fault separately, while ADD measures the aver-
age number of samples between the first ground-truth faulty
sample and the first detected faulty sample.

6 Experiments

We conducted a comparative analysis between our method
and various unsupervised models, encompassing both tradi-
tional and state-of-the-art data-driven methods. We hypoth-
esize that an effective unsupervised model should be capa-
ble of detecting all faults by partitioning samples into distinct
groups, hence we set the number of clusters equal to the num-
ber of classes. Figure 1 shows the evolution of clusters dur-
ing training. As baseline models, we utilized PCA [He et al.,
2005], ST-CatGAN [Tao et al., 20201, ConvAE [Zheng and
Zhao, 2020], and GRU [Lomov et al., 2021b].

All four models on both TEPR;e, and TEPg;.er datasets
have shown Detection FPR less than 0.01 which is below
practical threshold.

7 Conclusion

The study presents an unsupervised FDD model utilizing self-
supervised learning and deep clustering techniques, evaluated
on TEPgienm and TEPgier datasets. Our approach outper-
forms other unsupervised methods, attributed to the feature
extractor’s proficiency in encoding sensor data and deep clus-
tering’s ability to form dense clusters in the latent space.

We demonstrate the model’s effectiveness with unlabeled
data, common in industrial processes, and propose semi-
supervised fine-tuning to detect challenging faults with min-
imal labeled data. Our method combines Self-Supervised
Learning (SSL) with deep clustering, facilitating training
on unlabeled data while considering the anticipated number
of faults. Fine-tuning enables leveraging labeled examples
within the dataset. Finally, adjusting the expected number of
faults or incorporating new fault types allows fine-tuning of
the feature extractor without retraining from scratch.
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Ethical Statement

Though Al could be a great piece of automation, it shouldn’t
be blindly trusted to monitor and/or manage complex indus-
trial systems. Al algorithms, even the most intelligent ones,
may make critical mistakes leading to severe consequences:
money and time loss, environmental or human harm, etc. This
makes a huge field of study itself: intelligent algorithm mon-
itoring, safe integration, and application.

No one should use these algorithms without a failsafe. In
some cases, it’s even better not to use Al-powered systems at
all. We should always consider the whole picture: automation
gain and possible losses due to its failure.
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