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Abstract
Manufacturing companies are experiencing a trans-
formative journey, moving from labor-intensive
processes to integrating cutting-edge technologies
such as digitalization and AI. In this demo paper,
we present a novel AI tool to enhance manufac-
turing processes. Remarkably, our work has been
developed in collaboration with Agrati S.p.A., a
worldwide leading company in the bolts manufac-
turing sector. In particular, we propose an AI-
powered tool to address the problem of automati-
cally generating the production cycle of a bolt. Cur-
rently, this decision-making task is performed by
process engineers who spend several days to study,
draw, and test multiple alternatives before finding
the desired production cycle. We cast this task as a
model-based planning problem, mapping bolt tech-
nical drawings and metal deformations to, poten-
tially continuous, states and actions, respectively.
Furthermore, we resort to computer vision tools
and visual transformers to design efficient heuris-
tics that make the search affordable in concrete ap-
plications. Agrati S.p.A.’s process engineers ex-
tensively validated our tool, and they are currently
using it to support their work. To the best of our
knowledge, ours is the first AI tool dealing with
production cycle design in bolt manufacturing.

1 Industrial Context
Agrati S.p.A. is one of the world’s leading companies in bolts
manufacturing, with 12 production sites spread worldwide.
Most of their customers ask for customized products. In par-
ticular, a customer provides an RFQ (Request For Quotation)
with a technical drawing of the customized component and
the number of needed units (usually of the order of thou-
sands). Then, Agrati S.p.A.’s process engineers are asked to
promptly define a novel production pipeline to allow the com-
pletion of all the bolts by the time requested by the customer.
Every batch of bolts is produced starting from a steel thread
cut into cylinders. Furthermore, every cylinder is shaped into
a bolt through sequential steel-forming operations, such as
extrusions. Process engineers are called to propose both the
starting diameter of the thread and the operations (and in what
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Figure 1: Example of customer RFQ.

order) to be performed. There are multiple constraints when
deciding on the production pipeline, for example, limits on
the ratio between radius and length or a maximum length that
a machine can manage for a component. Remarkably, there
are more than 10 different forming operations, each deform-
ing a metal component differently. Each forming operation is
characterized by a set of parameters, for example, the height
at which a cut needs to be done or how much a radius needs
to be reduced. Forming operations can be applied along the
sagittal axis on both senses, thus making the effective deci-
sion space at least two times bigger. In Fig. 1, we report
an example of customer RFQ, specifying the shape of the
bolt and its measures. This project’s goal is to obtain both
a sequence of operations, their parameters, and the radius and
height of the starting thread. If the operations are applied in
the supplied order to such a thread, the final component is
obtained as requested by the customer without violating any
constraint. Process engineers usually study the optimal se-
quence of operations by adapting sequences developed in the
past for similar components. However, this task may require
several hours or even days, and, when the desired component
is particularly involved or no similar components have been
developed in the past, the process engineers’ team may fail to
find the correct sequence. This may lead to important delays
in production or loss of commercial opportunities. In Fig. 2,
we report an example of production cycle designed by the
company’s engineers.

2 Solution Outline
In Fig. 3, we report a screenshot of the interface of our tool.
On the left, in the blue rectangle, the uploaded RFQ of a com-
ponent is shown. It specifies its length and the presence of a
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Figure 2: Example of full production cycle, where we highlight the
RFQ supplied by the customer and the starting cylinder. The engi-
neers aim to reconstruct the path between the cylinder and the final
bolt, only knowing the latter.

Figure 3: Interface of the tool developed for automatic production
cycle computation. On the left, a user can supply the component’s
RFQ and its length in millimeters. Instead, on the right, the algo-
rithm’s output shows a rendering of the proposed cycle and the or-
dered list of operations together with the required parameters.

hexagonal head1. On the right, in the red rectangle, the full
production cycle (including the image and textual description
comprising all operations together with their parameters) is
shown. This production cycle corresponds to that one repre-
sented in Fig 2, showing that the cycle generated by our tool
(Fig. 3) perfectly matches that produced by the process engi-
neers (Fig. 2). We extensively evaluated the computing time
of our tool, and we observed that the tool always returns an
output in less than 10 seconds, running on a single core of
an Intel Xeon Platinum 8358 processor with 512 gigabytes
of RAM. Additional demonstrations of the tool’s capabilities
are shown here (YouTube Video).

3 A Tool for Automatic Production Cycle
Design

While scientific literature is rich in AI tools for process plan-
ning [Kumar, 2017], there are no examples of AI solutions
dealing with the problem of production cycle design for bolts.
To the best of our knowledge, ours is the first attempt to cast
the bolts production cycle as an AI model-based planning
problem and design algorithms to face it.

In particular, a finished component is the product of a se-
quence of operations applied to a metal thread. Different op-

1It is required to specify if the component is drilled or has a
hexagonal head since this information cannot be directly inferred
from an image.

Figure 4: Example of an (inverse) operations tree leading to a metal
thread starting from the finished component.

Figure 5: Mapping of a metal component’s silhouette to Cartesian
coordinates.

erations lead to different outcomes. We then search for the
sequence of operations that lead exactly to our component
when applied to a certain (and feasible) metal thread. If multi-
ple sequences of operations lead to different feasible threads,
we apply some pre-defined rule to break the tie (e.g., choos-
ing the thinnest thread). Flipping our perspective, the finished
component is our starting state, and the actions we can make
are the inverse of the operations available. Thus, there’s a
sequence of inverted operations (that, from now on, we will
call operations) that lead to a feasible metal thread, which is
our goal state. Operations are deterministic, and the model is,
in principle, fully known. Thus, our goal is to simulate the
production process and search for a successful sequence of
actions. Ultimately, we can represent this planning problem
as a search in a (recombinant) tree, and an example is re-
ported in Fig. 4. However, to search for the production cycle,
we need a complete representation of the model and, thus, a
formal model for both states and actions.

First, the formal model of a metal component describes
both the final bolt and intermediate steps between forming
operations (including the starting thread). All the products
in our scope possess rotational symmetry (possibly discrete),
which allows us to model a bolt only using its silhouette.
Thus, we safely encode the image of a metal component using
its corners’ coordinates, as in Fig. 5.

Our available operations are all assumed to be isovolu-
metric. Moreover, components are assumed to be rotation-
ally symmetric. Under these two assumptions (which most
components satisfy), all operations can be formally written
as compositions of 2D linear transformations, particularly
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Figure 6: Example of inverse free extrusion.

trapezium-to-trapezium transformations. In Fig. 6, which
represents a free extrusion (one of the most common forming
operations), we can observe the following: a thread, whose
silhouette is a rectangle, is transformed in two cylinders hav-
ing the same total volume, and one having a smaller radius.
Given height τ and new radius r, and thanks to the isovolume-
try, the transformation’s output is uniquely defined. More-
over, this transformation is easily invertible, allowing us to
use the inverse operation principle for our model. Finally, me-
chanical constraints can be easily ensured by quantities like
τ and r since they can be expressed as relationships between
such quantities.

4 Data-driven Heuristics for Computational
Feasibility

Our problem presents more than 10 different transformations,
most parametrized by continuous values. Moreover, some
components may require a sequence of more than 6 opera-
tions to be formed. Thus, the search tree can be huge, pre-
cluding an exhaustive search for the correct production cycle.
Our solution is to provide a data-driven heuristic to efficiently
guide search and explore a dramatically smaller number of
nodes. In particular, while performing a depth-first search,
we compute heuristics that prioritize the actions most likely
leading to feasible starting threads.

The available dataset is composed of both successful and
failed (inverse) production cycles (i.e., not leading to a thread
in few operations or where the thread is not feasible due
to constraints)2. In a cycle, we isolate all state-action-state
triples, allowing us to map each state-action couple to the
subsequent state. However, we encountered two main issues
in representing states in a tabular fashion as the coordinates
of their corners. First, the dimension may vary drastically,
e.g., a metal thread is only characterized by four coordinates
while a finished component may have many more corners;
and second, since the available dataset is mainly composed
of past production cycle images, it would require a large hu-
man effort to individuate all corners’ coordinates properly or
to check the correctness of any automated tool doing this. To
avoid this issue, we split cycle images, extract the images of
all the states involved, and embed them in equally-sized lower
dimensional arrays. To make this conversion, we use a Vision

2A non-sufficiently populated dataset can be augmented by gen-
erating synthetic cycles, using information on the model dynamics.

Figure 7: This scheme represents the working of our data-driven
heuristic. When exploring the tree, for every encountered state, we
embed it and predict the likelihood of success for every action. Then,
actions are chosen from the most likely to the least likely.

Transformer (ViT) encoder E , pre-trained on a large collec-
tion of images in a self-supervised fashion (DINO, [Caron et
al., 2021]).

Now, for every embedded state x = E(s), we can evaluate
for any available action a whether there is at least one path
to a goal state, i.e., a binary label indicating whether or not
the cycle resulted was successful. Any supervised learning
algorithm can use such a labeled dataset to predict the proba-
bility of a state-action couple resulting in a successful cycle,
namely p̂(x, a). In particular, we used a logistic regression
[Hosmer Jr et al., 2013]. For every new state-action couple,
even if not present in the historical dataset, we can now assign
a weight indicating the likelihood of it conducting a success-
ful cycle.

Fig. 7 reports the functioning scheme of our data-driven
heuristic. Actions most likely to reach a feasible thread are
chosen before the others, according to the ordering provided
by the supervised model prediction. Even if this real-time
inference of embedder plus supervised model brings some
additional computational burden to the single-node decision-
making, in practice, the reduction in the number of visited
nodes is so high that this results in dramatic advantages.

5 Conclusions and Future Developments
We provided an AI tool to assist engineers in designing the
production of custom metal components. To the best of our
knowledge, ours is the first tool of AI in this specific field.
An automatic production cycle design allows Agrati S.p.A.
to improve in-site operations planning, saving efforts, costs,
and time. In the future, we plan to extend this approach to
different (and possibly harder) manufacturing domains.
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