
LLM-powered GraphQL Generator for Data Retrieval

Balaji Ganesan , Sambit Ghosh , Nitin Gupta , Manish Kesarwani
Sameep Mehta , Renuka Sindhgatta

IBM Research
{bganesa1, ngupta47, manishkesarwani, sameepmehta}@in.ibm.com,

{sambit.ghosh, renuka.sindhgatta.rajan}@ibm.com

Abstract
GraphQL offers an efficient, powerful, and flexi-
ble alternative to REST APIs. However, applica-
tion developers writing GraphQL clients need both
technical and domain-specific expertise to reap its
benefits, and avoid over-fetching or under-fetching
data. Automated GraphQL generation has so far
proven to be a hard problem because of complex
GraphQL schema and lack of benchmark datasets.
To address these issues, our work focuses on build-
ing an LLM-powered pipeline that can accept user
requirements in natural language along with the
complex GraphQL schema and automatically pro-
duce the GraphQL query needed to retrieve the
necessary data. Automated GraphQL generation
helps reduce entry barriers to application develop-
ers, broadening GraphQL adoption.

1 Introduction
GraphQL is a query language for web application program-
ming interfaces (APIs) and a runtime engine for serving data.
A GraphQL Server like [IBM, 2024] hosts schema defining
the data entities and relationships that the clients can query.
Different aspects of GraphQL query language have been dis-
cussed in [Meta, 2012; Hartig and Pérez, 2018; Wittern et
al., 2018; Taelman et al., 2019; Hartig and Hidders, 2019;
Cha et al., 2020; Buna, 2021; Quiña-Mera et al., 2023].
GraphQL Schema generation and server are discussed in
[Cheng and Hartig, 2022; Li et al., 2023].

SPARQL [Hogan and Hogan, 2020], Gremlin [TinkerPop,
2020], Cypher [Feng et al., 2023] and PathQuery [Weaver et
al., 2021] have also been considered as alternatives for API
data access. However, GraphQL, first introduced by Face-
book (now Meta) in 2012, has emerged popular among ap-
plication developers. Some of the motivations for the adop-
tion of GraphQL for data retrieval also happen to be major
challenges in query generation using Large Language Mod-
els. GraphQL provides a SQL like access to data where appli-
cations can flexibly and yet precisely define which data they
require. GraphQL engines abstract away complex schema
and allow users to focus on data they care about. Hence to
automatically generate GraphQL from natural language, we
need to address the following challenges.

GraphQL applications can access any part of the data,
without having to stand up separate endpoints. Unlike REST
APIs quickly become very complex and hard to manage, the
ability of GraphQL to serve any data as long as it’s defined
in a schema is a major advantage. But working with large
schema is hard for LLMs [Kothyari et al., 2023]. Despite
the significant increase in LLM context lengths, we may not
want to dump very large schema in the prompt to generate
GraphQL queries. We need to identify parts of the schema
and the data sources which need to be queried.

GraphQL avoids the problems of over-fetching and under-
fetching of data in application development seen in REST
API and other frameworks. Since applications might be built
around pre-existing REST APIs which are harder to change
without losing backward compatibility, applications might
over-fetch or under-fetch data. This leads to less optimal
bandwidth utilisation and latency. With GraphQL queries,
applications can precisely specify the types and fields (anal-
ogous to tables and columns in SQL). But LLMs used for
query generation often hallucinate on the column and tables
names [Tai et al., 2023]. Fine tuning solutions are not suitable
for generalized data access in large applications.

The biggest challenge for automated GraphQL query gen-
eration comes from schema complexity. GraphQL schema
are deliberately complex because they can represent every
real world or business object to be queried. A corollary to this
is the complexity in handling massive REST APIs, for which
retrieval and reasoning based solutions have been proposed
[Patil et al., 2023]. Multi-hop querying across data sources
and queries that require results from sub-queries or user feed-
back also present challenges. Reasoning based solutions like
[Pourreza and Rafiei, 2023] are yet to be tried for GraphQL
query generation.

In this work, we demonstrate our solution to automati-
cally generate GraphQL queries using LLMs. We present an
in-context learning solution using IBM’s Granite Foundation
Models [Mishra et al., 2024], that elegantly addresses these
problems and paves the wave for solving more complex prob-
lems in this task. By using a synthetically generated dataset
comprising of natural language utterances, REST APIs and
database end points, and the Stepzen GraphQL engine [IBM,
2024], we demonstrate our solution to automatically generate
GraphQL queries using LLMs.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8657



Figure 1: End to end system for GraphQL Generation with optional NL Summarization

2 Our Approach

Answering natural language questions or generating queries
over GraphQL schema is significantly harder because of the
complexity of the GraphQL schema. This problem of work-
ing with complex schema requires the models to reason or
use human cues to learn the task. Querying multiple sources
(databases and APIs), querying multiple tables, querying a
portion of very large schema, multi-turn queries that build on
the results of previous turns are some of the related problems.

Our system architecture as shown in Figure 1 facilitates ap-
plication developers to connect to different data sources like
relational databases, REST APIs, and URLs of online data
sources. It also supports collections of these different cus-
tom sources. Ingest DB and APIs module enables users to
onboard and query their custom data source without migrat-
ing data from the user location to an external server, allowing
the GraphQL server to query the user database and return the
requested data. We fetch GraphQL Schema from StepZen for
display, while the Schema Enrichment module enriches the
GraphQL schema by annotating the fields with natural lan-
guage descriptions. While the API doc format prompts used
in [Tai et al., 2023] only re-format the schema, we add com-
ment like descriptions to the StepZen generated schema.

Schema Simplification module processes the default
GraphQL schema generated by the GraphQL server, which
includes schema elements and their resolver function, and
uses string parsing techniques to remove unnecessary infor-
mation. This simplification is essential for preparing the LLM
Prompt, which is based on the user’s Natural Language query
and the input GraphQL schema Prompt Generation module
structures the prompt into three parts: instruction, which out-
lines the objective and the format for the LLM to generate
the GraphQL query; few shots, containing examples for in-
context learning; and the input component, consisting of the
simplified GraphQL schema and the user’s query. Demon-
strating this schema simplification approach along with dif-
ferent prompting methods for few shot learning using IBM
Granite models are our core contributions in this work.

Prompt Accuracy (%)

Fixed one shot 62.79
Relevant one shot 72.09
Relevant 2 shots + Random 3 shots 81.00
Relevant 5 shots 81.40
Relevant 20 shots 84.00
Relevant 5 shots + schema comments 88.00

Table 1: Evaluation of few shot learning methods on IBM Granite-
20B-Code Base Model. Relevant 5 shots prompts with schema com-
ments outperform other variations.

We evaluate our approach on a synthetic dataset con-
sisting of natural language and GraphQL queries along
with GraphQL schema from StepZen. There are only few
GraphQL datasets available publicly like [Weaviate, 2024]
and [Carrera, 2024], but we did not evaluate on those since
their schema format is specific to the engine. Some text-to-
sql datasets like WikiSQL are easier to convert to GraphQL
but they do not contain multi-schema queries.

Table 1 shows the impact on the performance of GraphQL
generation using the prompts generated by our system. Each
row uses a distinct in-context learning strategy – Fixed one
shot refers to the case where a fixed training sample is
used, Relevant N Shot, where N ∈ {1, 5, 20}, refers to the
scenario where contextually relevant N samples were se-
lected, Random 3 Shot is where three random samples were
chosen, and Schema Comments is the scenario where the
GraphQL schema was enriched with description.Query gen-
eration models typically require one or few shot examples.
Following [Kovriguina et al., 2023] on a related problem, we
attempted one shot prompts, but few shot prompts outperform
them. We then evaluated on multiple combinations of few
shot prompts as shown in Table 1. We observe that adding
comments to server generated schema improves accuracy.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8658



Figure 2: Setting up data access from multiple sources

3 Demo
Our application demonstrates the advances we have made
managing different data sources using the Stepzen frame-
work, as well as enhancing Foundation Models to generated
GraphQL queries. As shown in Figures 2, 3 and 4, we demon-
strate an end to end application to retrieve data from databases
and REST APIs and combinations of multiple such sources.

One of the goals of this work is to enable data access from
several data sources which can be databases or REST APIs.
As can be seen in Figure 2, we present few example sources,
but users can provide any remote url or database as a custom
source. When we upload these sources, the schema is de-
ployed on StepZen to create respective data access endpoints.
When multiple sources are selected together, we merge their
schema on the fly to produce a combined schema and deploy
at a new endpoint that can be queried together. Once the
schema has been deployed on the server, we can query that
using GraphQL queries.

To enable natural language querying of these sources, we
first need to convert them to GraphQL. As we discussed in
Section 2, our approach to automatically generating GraphQL
from the natural language query and the schema is to use in
context learning. Our prompts consist of instruction, few shot
examples and text query. This prompt is then given to IBM’s
Granite Foundation Models, which produce the GraphQL
queries. Figure 3 shows the prompt given to LLM, with
the natural language query, the combined schema from two
sources, and five few shot examples.

In Section 2, we described our experiments on generating
GraphQL queries. Figure 4 shows the generated GraphQL
query for the user given natural language question. This
query can now be executed on GraphQL engines like IBM

Figure 3: Design of few shot prompts for generating GraphQL

Figure 4: Data and summary retrieved for the natural language query

StepZen, Apollo [Apollo Graph Inc, 2024] and Hasura [Ha-
sura, 2024]. The output from the GraphQL engine is a json
consisting of the data required to answer our natural language
query. We give the natural language query along with the gen-
erated data to IBM Granite Foundation Models to produce a
natural language summary of the data retrieved. In the above
figures, we have demonstrated our end to end system to go
from multiple data sources, prompt generation and data ac-
cess in formats users are comfortable with.

Conclusion
In this work, we demonstrated an advanced framework that
utilizes Large Language Models (LLMs) to enable natural
language querying of integrated data sources, showcasing a
significant advancement in data accessibility and manage-
ment. By leveraging IBM’s Granite Foundation Models and
StepZen, it simplifies complex data interactions, offering a
streamlined approach to querying and summarizing data. We
have demonstrated a practical application showcasing the po-
tential of AI in enhancing user engagement with data systems.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8659



Ethical Statement
Given this work demonstrates our capabilities in accessing
data from databases and REST API using GraphQL and
Large Language Models (LLMs), we have taken care to use
only synthetic data in this demonstration. Our models are
trained on carefully curated data removing harmful, profane,
personal and sensitive data. Our system is intended to be used
in data systems with rigorous access management. To the best
of our knowledge, our work does not pose any potential harm
to the community at large.

Acknowledgements
We thank Carlos Eberhardt, Dan Debrunner and Anant Jhin-
gran for their inputs on StepZen and valuable feedback. We
thank the anonymous reviewers for their feedback. We thank
the editors for help ing to improve our presentation.

References
[Apollo Graph Inc, 2024] Apollo Graph Inc. Apollo

GraphQL. https://www.apollographql.com/, 2024. Ac-
cessed: 2024-02-19.

[Buna, 2021] Samer Buna. GraphQL in Action. Simon and
Schuster, 2021.

[Carrera, 2024] Andre Carrera. SQL to GraphQL [dataset].
https://github.com/andr-ec/sql-to-graphql, 2024. Ac-
cessed: 2024-02-19.

[Cha et al., 2020] Alan Cha, Erik Wittern, Guillaume Bau-
dart, James C. Davis, Louis Mandel, and Jim A. Laredo.
A principled approach to graphql query cost analysis. In
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020.

[Cheng and Hartig, 2022] Sijin Cheng and Olaf Hartig.
Lingbm: a performance benchmark for approaches to
build graphql servers. In International Conference on Web
Information Systems Engineering, 2022.

[Feng et al., 2023] Guandong Feng, Guoliang Zhu, Shengze
Shi, Yue Sun, Zhongyi Fan, Sulin Gao, and Jun Hu. Ro-
bust nl-to-cypher translation for kbqa: Harnessing large
language model with chain of prompts. In China Con-
ference on Knowledge Graph and Semantic Computing,
2023.

[Hartig and Hidders, 2019] Olaf Hartig and Jan Hidders.
Defining schemas for property graphs by using the graphql
schema definition language. In Proceedings of the 2nd
Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data An-
alytics (NDA), 2019.

[Hartig and Pérez, 2018] Olaf Hartig and Jorge Pérez. Se-
mantics and complexity of graphql. In Proceedings of the
2018 World Wide Web Conference, 2018.

[Hasura, 2024] Hasura. Hasura graphql engine. https://
hasura.io/, 2024. Accessed: 2024-02-19.

[Hogan and Hogan, 2020] Aidan Hogan and Aidan Hogan.
Sparql query language. The Web of Data, 2020.

[IBM, 2024] IBM. StepZen. https://stepzen.com/, 2024. Ac-
cessed: 2024-05-19.

[Kothyari et al., 2023] Mayank Kothyari, Dhruva Dhingra,
Sunita Sarawagi, and Soumen Chakrabarti. Crush4sql:
Collective retrieval using schema hallucination for
text2sql. arXiv preprint arXiv:2311.01173, 2023.

[Kovriguina et al., 2023] Liubov Kovriguina, Roman
Teucher, Daniil Radyush, and Dmitry Mouromtsev.
Sparqlgen: One-shot prompt-based approach for sparql
query generation. SEMANTiCS Posters and Demos 2023
CEUR Workshop Proceedings, 2023.

[Li et al., 2023] Huanyu Li, Olaf Hartig, Rickard Armiento,
and Patrick Lambrix. Obg-gen: Ontology-based graphql
server generation for data integration. In Proceedings of
the ISWC, 2023.

[Meta, 2012] Meta. Graphql: A data query lan-
guage. https://engineering.fb.com/2015/09/14/core-infra/
graphql-a-data-query-language, 2012. Accessed: 2024-
06-08.

[Mishra et al., 2024] Mayank Mishra, Matt Stallone,
Gaoyuan Zhang, Yikang Shen, Aditya Prasad, et al.
Granite code models: A family of open foundation models
for code intelligence, 2024.

[Patil et al., 2023] Shishir G Patil, Tianjun Zhang, Xin
Wang, and Joseph E Gonzalez. Gorilla: Large lan-
guage model connected with massive apis. arXiv preprint
arXiv:2305.15334, 2023.

[Pourreza and Rafiei, 2023] Mohammadreza Pourreza and
Davood Rafiei. Din-sql: Decomposed in-context learn-
ing of text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015, 2023.

[Quiña-Mera et al., 2023] Antonio Quiña-Mera, Pablo Fer-
nandez, José Marı́a Garcı́a, and Antonio Ruiz-Cortés.
Graphql: A systematic mapping study. ACM Computing
Surveys, 2023.

[Taelman et al., 2019] Ruben Taelman, Miel Vander Sande,
and Ruben Verborgh. Bridges between graphql and rdf. In
W3C Workshop on Web Standardization for Graph Data,
2019.

[Tai et al., 2023] Chang-You Tai, Ziru Chen, Tianshu Zhang,
Xiang Deng, and Huan Sun. Exploring chain-of-
thought style prompting for text-to-sql. arXiv preprint
arXiv:2305.14215, 2023.

[TinkerPop, 2020] Apache TinkerPop. The grem-
lin graph traversal machine and language.
https://tinkerpop.apache.org/gremlin.html, 2020.

[Weaver et al., 2021] Jesse Weaver, Eric Paniagua, Tushar
Agarwal, Nicholas Guy, and Alexandre Mattos. Introduc-
ing pathquery, google’s graph query language, 2021.

[Weaviate, 2024] Weaviate. Weaviate GraphQL Go-
rilla [dataset]. https://huggingface.co/datasets/weaviate/
WeaviateGraphQLGorilla, 2024. Accessed: 2024-02-19.

[Wittern et al., 2018] Erik Wittern, Alan Cha, and Jim A
Laredo. Generating graphql-wrappers for rest (-like) apis.
In International Conference on Web Engineering, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

8660

https://www.apollographql.com/
https://github.com/andr-ec/sql-to-graphql
https://hasura.io/
https://hasura.io/
https://stepzen.com/
https://engineering.fb.com/2015/09/14/core-infra/graphql-a-data-query-language
https://engineering.fb.com/2015/09/14/core-infra/graphql-a-data-query-language
https://huggingface.co/datasets/weaviate/WeaviateGraphQLGorilla
https://huggingface.co/datasets/weaviate/WeaviateGraphQLGorilla

	Introduction
	Our Approach
	Demo

