
Do You Remember . . . the Future?
Weak-to-Strong generalization in 3D Object Detection

Alexander Gambashidze1,2 , Aleksandr Dadukin2 , Maxim Golyadkin1,2 , Maria
Razzhivina2 and Ilya Makarov1,3

1Artificial Intelligence Research Institute
2HSE University

3ISP RAS Research Center for Trusted Artificial Intelligence
{amgambashidze, aodadukin, mvrazzhivina}@edu.hse.ru, {gambashidze, golyadkin, makarov}@airi.net

Abstract

This paper demonstrates a novel method for
LiDAR-based 3D object detection, addressing ma-
jor field challenges: sparsity and occlusion. Our
approach leverages temporal point cloud sequences
to generate frames that provide comprehensive
views of objects from multiple angles. To address
the challenge of generating these frames in real-
time, we employ Knowledge Distillation within
a Teacher-Student framework, allowing the Stu-
dent model to emulate the Teacher’s advanced per-
ception. We pioneered the application of weak-
to-strong generalization in computer vision by
training our Teacher model on enriched, object-
complete data. In this demo, we showcase the ex-
ceptional quality of labels produced by the X-Ray
Teacher on object-complete frames, showing our
method distilling its knowledge to enhance object
3D detection models.

1 Introduction
In the rapidly advancing fields of computer vision and au-
tonomous driving, 3D object detection is crucial for safe ve-
hicle navigation and interaction with the environment. Li-
DAR, with its detailed 3D environmental data capture, stands
out among sensing technologies. However, LiDAR data faces
challenges like sparsity and occlusion, affecting 3D detection
efficiency. Sparsity results from LiDAR’s point cloud data,
which, despite its detail, often misses the continuous cover-
age seen in camera images or self-supervised learning based
reconstructed dense depth maps [Karpov and Makarov, 2022;
Indyk and Makarov, 2023; Luginov and Makarov, 2023]. Oc-
clusions further complicate detection, as objects can be hid-
den by obstacles.

Our X-Ray Teacher framework [Gambashidze et al., 2024]
offers a novel solution by utilizing the temporal dimension of
LiDAR data to construct Object-Complete frames from mul-
tiple viewpoints and use it for weak-to-strong knowledge dis-
tillation, presented on Figure 1. This approach effectively
mitigates sparsity and occlusion, enabling the distillation of
comprehensive object knowledge to our detection system.

Figure 1: We radically simplify point clouds with object completion
to train the X-Ray teacher that provides much more accurate predic-
tions if used on object-complete frames. This allows us to overcome
baseline models via distillation in the supervised setting.

Central to our innovation is the Teacher-Student frame-
work, where the Teacher model, trained on Object-Complete
frames, imparts its enhanced environmental understanding to
the Student model. This knowledge transfer significantly im-
proves detection performance, especially since real-time gen-
eration of Object-Complete frames is impractical due to the
need for future viewpoints.

Validated across leading autonomous driving datasets, our
method integrates seamlessly with any model, consistently
boosting performance of supervised models. In this demon-
stration, we highlight the Teacher model’s precise predictions
and the X-Ray Student’s ability to surpass original base mod-
els, setting new accuracy and reliability standards in 3D ob-
ject detection.

2 Related Works
In the realm of 3D object detection, the field has evolved
from directly processing point clouds with foundational mod-
els like PointNet and PointNet++ [Qi et al., 2017a; Qi et
al., 2017b], to adopting voxel-based representations for effi-
ciency, leveraging 3D sparse convolutions [Yang et al., 2018;
Yin et al., 2021; Zhou et al., 2022; Xu et al., 2022], and in-
corporating advanced techniques like modified self-attention
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Figure 2: Overall X-Ray Knowledge Distillation for Supervised Learning.The idea is to make the Student model mimic the X-Ray Teacher’s
behaviour like it also sees Object-Complete frames.

layers for enhanced performance [Wang et al., 2023].
The concept of Knowledge Distillation (KD), introduced

by Hinton et al. [Geoffrey Hinton, 2015], employs a teacher-
student model to transfer knowledge, typically focusing on
logits/regression distillation and feature map distillation. Un-
like conventional KD applications in 3D detection that pri-
oritize efficiency [Cho et al., 2023; Yang et al., 2022], our
X-Ray Teacher model adopts a hybrid distillation approach
to enhance detection accuracy, setting a new precedent for
leveraging KD to surpass state-of-the-art performance.

3 Methodology
Our framework, designed for easy integration with any ob-
ject detection model, leverages sequential LiDAR data for
innovative enhancements. We hypothesized that training on
object-complete data-aggregating points from all sequence
frames-would significantly improve predictions and super-
vised distillation. Our X-Ray Teacher, a weaker network, ef-
fectively guides a more robust student model to higher accu-
racy. Validation on the NuScenes dataset showed the object-
complete model achieving 79.5% mAP (trained and validated
on object-complete frames), while baseline model has 59.2%
mAP (trained and validated on original clouds).

3.1 Object Complete Frames
To make point clouds much simpler and address the occlu-
sion and sparsity problems, we need to aggregate all possible
information about each object in each point cloud from all
frames in a sequence. In the supervised setting the task is
quite clear: all objects have their own instance IDs and well
annotated boxes, so we only need to iterate over all frames
and find all appearances of an object that we currently have
processed.

3.2 X-Ray Teacher
It is evident that a model trained on original point clouds will
not perform better on object-complete frames. In the case of
the NuScenes dataset, we validated our original CenterPoint
model on an object-complete validation set and achieved only
a 31.6% mAP score, which confirms the necessity of training
X-Ray Teachers either from scratch or by fine-tuning them
from an original pretrained checkpoint. This underscores the

critical importance of the X-Ray Teacher stage where we
train teacher models from scratch. This step transforms the
Teacher model into a weaker one that guides the stronger (stu-
dent) model to make even better predictions.

3.3 Knowledge Distillation in Supervised Setting
Having prepared object-complete point clouds, we proceeded
to train the baseline model (Student) to minimize Knowledge
Distillation losses, aligning it with the X-Ray Teacher’s in-
sights on complete data. Distillation involves matching the
Teacher’s and Student’s outputs across several dimensions:
backbone encoder embeddings, bounding box regression la-
bels, class distributions for classification tasks, and interme-
diate features from regression and classification heads before
label assignment. The pipeline is shown on Figure 2.

The distillation losses are defined as follows:

LKD
heads = α1LKD

reg + α2LKD
cls =

= α1DKL(Scls∥Tcls) + α2MSE(Sreg, Treg) (1)

LKD
feat = MSE(Tback, ϕ(ω(Sback))) (2)

LKD
det = Ldetection(Spreds, T̃boxes) (3)

Here, T and S represent the Teacher and Student model
outputs, respectively, with S processing the original frame
F and T handling the Object-Complete Frame F̃ . The
terms Sback and Tback denote the backbone outputs, while
Sreg, Treg , and Scls, Tcls correspond to the regression and
classification outputs. T̃boxes are the Teacher’s predicted
boxes, and Spreds is the Student’s overall output. The param-
eters α1, α2 are weights for the loss components, and ϕ and
ω adjust feature map dimensions and flexibility, respectively.
This approach ensures the Student model learns to extract and
utilize rich information from less detailed data, mirroring the
Teacher’s advanced detection capabilities.

4 Experiments
4.1 Implementation Details
In this demonstration we show results on Waymo Open
Dataset [Sun et al., 2020] and NuScenes [Caesar et al., 2020].

For the Waymo dataset, we have refined model architec-
tures due to its longer sequences, which resulted in highly
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Figure 3: We show typical cases on NuScenes Validation set where
student model works significantly better on sparse and occluded ob-
jects. Black color denotes ground truth, yellow represents predic-
tions.

Model mAP/mAPH L1 mAP/mAPH L2 #params

SECOND 67.2/63.1 61.0/57.2 5.3m
X-Ray SECOND 67.0/62.8 60.4/56.7 5.3m
SECOND-Scaled 66.8/62.7 59.4/56.1 6.2m
X-Ray SECOND-Scaled 68.3/64.3 61.9/58.0 6.2m

CenterPoint 74.4/71.7 68.2/65.8 8.3m
X-Ray CenterPoint 73.2/69.7 67.1/64.5 8.3m
CenterPoint-Scaled 74.1/71.5 67.9/65.3 9.2m
X-Ray CenterPoint-Scaled 75.2 /72.1 68.9/66.3 9.2m

DSVT Pillar 79.5/77.1 73.2/71.0 8.6m
X-Ray DSVT Pillar 79.2/76.7 72.6/70.3 8.6m
DSVT Pillar-Scaled 79.6/77.2 73.3/71.2 9.5m
X-Ray DSVT Pillar-Scaled 80.1/77.9 73.7/71.4 9.5m

Table 1: Our method performance on Waymo Validation dataset.
We scale student models on this dataset, because Waymo object-
complete frames are much more informative compared to NuScenes
so we need our student models to be more complex to match much
simpler feature maps.

dense complete objects post our object completion procedure,
see example in Figure 4. Given that the data for the X-Ray
Teacher is significantly simpler, we increased the complex-
ity of the student network to better match the teacher’s fea-
ture maps distribution. The same principle does not hold for
NuScenes as it has less informative object-complete clouds.
We used default configuration files for all runs.

4.2 Results
In this demo, we introduce our novel plug-and-play frame-
work for LiDAR-based 3D object detection. Our method
demonstrates extreme robustness and improves all models
we have tested so far, including the previous state-of-the-art,
DSVT [Wang et al., 2023]. We validated our method on the
two most popular datasets: Waymo and NuScenes, see results

Model mAP NDS
CBGS 50.0 59.2
X-Ray CBGS (ours) 50.8 60.4
CenterPoint-Voxel 53.4 61.3
X-Ray CenterPoint-Voxel (ours) 54.3 62.9

Table 2: Our method performance on NuScenes validation set.
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Figure 4: Comparison of object-complete and original frames,
Waymo Open dataset.

in Table 1 and Table 2, respectively.
We also show visual side-by-side comparison of the frame-

work performance on NuScenes at Figure 3.

5 Conclusion
In this demonstration, we highlight the capability of combin-
ing object points from different frames to create complete ob-
ject frames. This approach seamlessly integrates knowledge
distillation into any 3D object detection pipeline, functioning
as a plug-and-play solution. Our results reveal that a Teacher
model, trained and validated on object-complete frames de-
livers highly accurate predictions. The Teacher model’s be-
havior enables the student model to focus on occluded objects
and gain a better understanding of sparsely represented ones.

Ethical Statement
Our research on LiDAR-based 3D object detection presents
an improvement in detection metrics by 2-3%. While signifi-
cant within our domain, this advancement requires extensive
hyperparameter tuning, leading to increased computational
demands and potential environmental impacts.

We utilized open datasets from Waymo and NuScenes,
with all privacy concerns managed by the dataset providers.
This approach ensures our adherence to data privacy stan-
dards and contributes to the reproducibility of our work.

A notable consideration is the impact of autonomous driv-
ing technologies on employment within the transportation
sector. As these technologies advance, particularly through
enhancements like ours, the demand for human drivers may
decrease, posing socioeconomic challenges.

In summary, our work seeks to push forward the capabil-
ities of autonomous driving technologies while acknowledg-
ing the ethical considerations of increased computation and
the potential societal impacts on employment. We emphasize
the importance of responsible technological advancement and
the need for a balanced approach to innovation.
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