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Abstract
In this work, we propose a novel framework
for image segmentation guided by visual prompt-
ing, which leverages the power of vision foun-
dation models. Inspired by recent advancements
in computer vision, our approach integrates mul-
tiple large-scale pretrained models to address the
challenges of segmentation tasks with limited and
sparsely annotated data interactively provided by a
user. Our method combines a frozen feature extrac-
tion backbone with a scalable and efficient proba-
bilistic feature correspondence (soft matching) pro-
cedure derived from Optimal Transport to couple
pixels between reference and target images. More-
over, a pretrained segmentation model is harnessed
to translate user scribbles into reference masks and
matched target pixels into output target segmen-
tation masks. This results in a framework that
we name Softmatcher, a versatile and fast training-
free architecture for image segmentation by visual
prompting. We demonstrate the efficiency and scal-
ability of Softmatcher for real-time interactive im-
age segmentation by visual prompting and show-
case it in diverse visual domains, including techni-
cal visual inspection use cases.

1 Introduction
Foundation Models ushered in a significant shift in how ma-
chine learning models are developed and deployed, pivoting
from a paradigm centered on training use case-tailored mod-
els on task-specific data to a paradigm where single generalist
models are pretrained on diverse large-scale data, then fine-
tuned for a wide range of tasks [Bommasani et al., 2022].
Specifically in computer vision, models such as SAM [Kir-
illov et al., 2023], CLIP [Radford et al., 2021], and self-
supervised backbones such as DINO [Caron et al., 2021] and
DINOv2 [Oquab et al., 2023] have unlocked powerful and
versatile visual functionalities like object detection, semantic
segmentation and expressive embeddings that are at the core
of a multitude of diverse applications. In particular, the pos-
sibility of using and combining these models in novel ways
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to address specific challenges in applied computer vision has
been a topic of recent interest, including as a means to design
new workflows in technical domains such as visual inspection
(see e.g. [Rigotti et al., 2023]).

In this work we take inspiration from the recent advance-
ments driven by the approach of compositionally combining
multiple Foundation Models to address sophisticated com-
puter vision tasks. Specifically, we focus on the problem of
image segmentation, which is a fundamental task in computer
vision with a wide range of applications, including medi-
cal imaging, autonomous driving, and visual inspection, with
a particular focus in developing a human-computer interac-
tion workflow to facilitate open-world segmentation of im-
ages by visual prompting through sparse user annotations.
For that, we largely build upon a previous architecture named
Matcher, which was designed to perform training-free few-
shot segmentation using in-context examples by means of off-
the-shelf vision Foundation Models [Liu et al., 2023]. Our
framework enhances this approach’s interactivity in two cru-
cial ways: 1) we integrate a pretrained segmentation model
to translate user scribbles on a representative sample of the
object class to be segmented into reference masks, which are
then passed to the few-shot segmentation architecture; 2) we
develop a scalable probabilistic feature soft-matching proce-
dure whose efficiency and low-latency allows us to embed
few-shot segmentation in a real-time interactive workflow.

2 Related Work
The Segment Anything Model (SAM) [Kirillov et al., 2023]
has popularized the prompting paradigm in computer vision
by enabling fine-grained image segmentation through inter-
active prompts in the form of points and/or bounding boxes.

Both Visual Prompting via Inpainting [Bar et al., 2022]
and SegGPT/Painter [Wang et al., 2023] presented visual
prompting models trained on few-shot image segmentation
datasets. These models operate on a reference image and cor-
responding segmentation masks and generate a segmentation
mask for a target image based on the reference.

[Zhang et al., 2023] introduced a training-free method for
one-shot segmentation leveraging pretrained image encoders
in conjunction with SAM. The labeled pixels within the an-
notated mask on a reference image are assigned to pixels on
target images thanks to a cosine similarity matrix of their cor-
responding encoded patches. The target patch of maximum
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Figure 1: Visual Prompting Framework: 1) Prompting & reference segmentation: Coarse user annotations (scribbles) are converted to
reference segmentation mask using SAM. 2) Matching: Image features are extracted using DINOv2 from reference and target images. The
feature patches within the reference mask are matched to all patches in the target through our probabilistic matching procedure, resulting in
a probability map over target images. This is sampled to obtain points, which are then clustered. 3) Mask generation: For each cluster, the
respective points are passed to SAM to generate mask proposals. Each mask proposal is scored and discarded based on SAM-predicted IOU
or merged into the final output mask.

similarity is then utilized by SAM to generate a segmentation
mask for the target object.

[Gupta and Kembhavi, 2022] presented a neuro-symbolic
approach for solving complex visual tasks given natural lan-
guage instructions by leveraging the in-context learning abil-
ity of LLMs to generate modular programs that combine pre-
trained models leveraging their compositionality, a feature
that has received recent interest for enabling flexible gener-
alization (see e.g. [Ito et al., 2022]).

[Liu et al., 2023] introduced Matcher, an approach that
uses a bidirectional matching procedure to match the encoded
reference and target image patches using the Hungarian algo-
rithm, an accurate but slow assignment algorithm with worst-
case complexity cubic in the size of the problem [Crouse,
2016]. Similarly to [Zhang et al., 2023], one-shot (or few-
shot) segmentation is implemented by assigning annotated
encoded pixels on reference images to encoded target pixels,
which then serve as prompts for SAM to produce segmenta-
tion mask proposals on the target images. The set of mask
proposals is finally scored and either accepted or rejected.

[Janouskova et al., 2023] proposed a framework for model-
assisted labeling of visual inspection defects through an inter-
active annotation process leveraging gradient-based explain-
ability to improve the efficiency of the provided labels.

3 Visual Prompting Framework
System architecture. Figure 1 presents our Sofmatcher
framework for interactive image segmentation guided by vi-
sual prompting on a reference image. This consists of 3 steps:
1) Prompting & reference segmentation, where a user pro-
vides scribbles on the reference image indicating the object

class to be labeled on the target images, and where the scrib-
bles are used as sparse prompt for SAM which then is used to
output a reference mask; 2) Matching, where soft probabilis-
tic matching (detailed below) outputs a probability map over
pixels of each target image quantifying their match to pix-
els in the reference mask; points are then sampled from the
probability map, clustered and used for 3) Mask generation,
where clustered points are used as sparse prompts to SAM to
generate mask proposals; these are filtered based on SAM’s
IoU predictions and aggregated into the mask output.

The key innovations of our framework compared to pre-
vious approaches like Matcher [Liu et al., 2023] are aimed
at producing an architecture that is amenable to being em-
bedded in an interactive object segmentation workflow where
users can provide visual prompts by coarsely annotating ref-
erence images through scribbles and interact in real-time with
the resulting segmentation masks, possibly by correcting or
complementing them with additional annotations.

Our first innovation for this is the Prompting & reference
segmentation step in Fig. 1, which, while conceptually sim-
ple, provides a way for the user to directly and intuitively
prompt the segmentation pipeline with coarse visual prompts
(scribbles) instead of requiring detailed segmentation masks.

Our second major innovation is a computationally efficient
version of the Matching step in Fig. 1, and was dictated by
the requirement of low-latency segmentation and the obser-
vation that feature matching procedure used in the past, like
the Hungarian algorithm (see e.g. [Liu et al., 2023]), dis-
play a worst-case computational complexity that scales cu-
bically with image sizes (number of patches) [Crouse, 2016],
making them unpractical for an interactive workflow. Instead
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Figure 2: Relative timing of different matching procedures com-
puted on 1 CPU core on a Dual AMD EPYC 7003/7002 Series Pro-
cessors, assuming a featurization based on a VIT encoder with patch
size of 14, feature size of 768.

of using (Hungarian) bipartite matching based on the cosine
similarity between reference and target features, we opt for
an Optimal Transport (OT) approach based on the quadratic
cosine similarity matrix as a cost matrix. While very re-
lated, this method allows us to motivate a sequence of ap-
proximations for an efficient implementation of the match-
ing procedure: we first introduce an entropic regularization,
then consider the case of large regularization limit where
the solution to the OT problem converges to the geomet-
ric mean of softmaxed cosine similarity maps between indi-
vidual reference features and target feature maps (where the
averaging is conducting across reference features) [Dognin
et al., 2019], an operation which only has quadratic com-
plexity in the number of image patches complexity and re-
sults in our Softmatcher procedure. Moreover, it affords
an even more scalable implementation by approximating the
softmax computation of reference-target feature similarities
through Random Fourier Features [Rahimi and Recht, 2007;
Choromanski et al., 2020], which we call Softmatcher RFF.

Figure 2 compares the timing of matching reference and
target image features with the Hungarian algorithm, com-
pared to our proposed soft matching methods as a function
of image size assuming a featurization based on a VIT en-
coder with patch size of 14, feature size of 768. Softmatcher
is around 6x faster than the Hungarian algorithm at image size
448, and this discrepancy quickly increases with image size
due to its better computation complexity scaling. Softmatcher
RFF is slightly faster and displays even better scalability.

We evaluate our visual prompting pipeline on FSS-1000
[Li et al., 2020], which consists of 1000 object classes with
pixel-wise annotations. FSS-1000 contains many objects that
are not part of any previously annotated dataset (e.g., tiny
daily objects, merchandise, and cartoon characters). As this
disentangles previous knowledge from pretrained models to a
certain degree, it lends itself well as a few-shot benchmark.

We integrate this improved matching pipeline into an inter-
active Visual Prompting platform that allows users to segment
object classes of interest by merely highlighting representa-
tive objects in one or more reference images with scribbles.
Given the improved computation complexity, our method al-

FSS-1000 Matcher SM (ours) SM RFF (ours)
one-shot 87.0 85.5± 0.7 85.9± 0.6
five-shot 89.6 87.1± 0.1 87.1± 0.3

Table 1: Few-shot evaluation on FSS-1000: We compare perfor-
mance in terms of IOU of Matcher with our Softmatcher (SM) and
Softmatcher RFF (SM RFF) methods on FSS-1000.

lows the user to iterate in real-time with the segmentation out-
puts, adding additional scribbles on additional references to
improve segmentation in case the model missed something,
resulting in an intuitive and seamlessly interactive workflow.s
Deployed service and front-end. The interactive web in-
terface is designed to provide seamless interaction between
the user and the Softmatcher pipeline. It consists of a front-
end built with Angular, a Python API back-end, and an in-
ference service using Torch Serve. Users add scribbles to
any image to mark objects of interest. The visual prompting
pipeline then highlights similar objects with precise segmen-
tation masks the target images. If the user is not satisfied with
the initial results, they can refine the outputs by iteratively
adding or deleting scribbles. Alternatively, instead of adding
more scribbles, users can add additional prompts by convert-
ing output segmentation masks from a previous run into ref-
erence masks. These reference masks will skip step 1 of the
pipeline (see Fig. 1). The system also allows for scribbles to
be classified into different categories, enabling the creation of
segmentation masks for multiple classes.

The process of repeatedly adding and adjusting scribbles
provides users with a deeper understanding of how the model
operates. By understanding the model’s capabilities and lim-
itations, users learn to collaborate with the model more ef-
fectively, leading to better outcomes. We’ve also started to
enhance our framework’s interactivity with vision-language
models like CLIP, enabling the use of text prompts in addi-
tion to reference scribbles. This opens up the possibility of
combining visual and text prompts to refine masks mutually
and address scenarios where scribbling alone is not enough.
Demonstration. We illustrate how users typically engage
with our web interface and the visual prompting pipeline
through three sample projects. The first two projects illustrate
a general use case on everyday objects, while the third shows
a domain-specific proprietary defect detection dataset. Our
demonstration covers the interactive process of adding scrib-
bles to images, executing the pipeline to receive segmentation
masks, and then enhancing the results by adding additional
scribbles. Furthermore, we showcase the capability for users
to process images with references from various classes.
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