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Abstract

In the area of symbolic AI, researchers strive to
develop techniques to teach machines (common-
sense) reasoning. Human reasoning is often argu-
mentative in its nature,and consequently, compu-
tational models of argumentation constitute a vi-
brant research area in symbolic AI.In this paper I
describe my most significant contributions to the
field spanning from general non-monotonic logics
to formal argumentation.

1 Inconsistency in Non-Monotonic Logics
Statistical machine learning, in particular the development of
artificial neural networks, has produced a plethora of scien-
tific breakthroughs within the last years, with the most re-
cent ones being generative models like GPT. However, it is
commonly agreed in the AI community that up to now, those
models lack proper reasoning capabilities which leads to non-
sensical outputs of language models or images of physically
impossible situations produced by e.g. diffusion models.

While statistical machine learning techniques are special-
ized in finding patterns in data, the research area of knowl-
edge representation and reasoning (KR) is driven by the goal
to teach machines common sense reasoning and deriving
conclusions on their own. A vital observation in this con-
text is that classical propositional logics are too restrictive in
their nature since in many real world scenarios, one has to
draw conclusions from unknown, fuzzy, or even inconsistent
knowledge. Moreover, commonsense reasoning is oftentimes
non-monotonic, that is, one might believe something to be
true, but withdraws this conclusion as soon as some novel
information is learned. In propositional logic, this behavior
cannot be modeled.

In order to overcome these issues, researchers propose and
study various logics and (non-monotonic) formalisms, tai-
lored to model different real world scenarios [Van Harmelen
et al., 2008]. Thereby, the trade-off underlying any KR for-
malism is the expressive power vs. the computational com-
plexity of reasoning. The goal is to find formalisms that are
capable of expressing involved reasoning tasks, while ensur-
ing that nonetheless, drawing conclusions in an automated
way can then be performed efficiently.

Independent of the formalism under consideration, an im-
portant issue is the handling of inconsistent information. Sup-
pose we are given a knowledge base K (for instance, K could
be a set of inference rules). Assuming K models some real
world knowledge, has undergone updates, or represents the
aggregated beliefs of different agents, K might contain con-
flicting information, i.e., it entails both an atom p and its con-
trary ¬p. In classical propositional logic, this would cause K
to collapse entirely, i.e., by the principle of explosion, any
atom can now be deduced from K. This is, however, not fea-
sible in commonsense reasoning; a conflict in a subset of the
knowledge base is usually no reason to neglect any informa-
tion encoded in K. For instance, if a database contains two
different phone numbers of Alice, would we then assume that
all information stored about Alice is wrong?

Striving to tackle this issue, in 1987 Raymond Reiter pub-
lished his seminal article entitled A theory of diagnosis from
first principles [Reiter, 1987]. Here, Reiter studies how to
identify reasons for misbehavior in logical systems. One of
the main results of this article is his so-called hitting set dual-
ity. It states that any⊆-maximal consistent subset of a knowl-
edge base K can be computed by removing a ⊆-minimal hit-
ting set of the ⊆-minimal inconsistent subsets of K1. Reiter
studied this issue in a quite specific setting, but it is folklore
that this result generalizes to arbitrary monotonic logics.

The main subject of investigation during my PhD studies
was handling inconsistency in non-monotonic logics. One
of the central observations was that Reiter’s hitting set du-
ality can be extended to this more general setting when
using the notion of strong inconsistency [Brewka et al.,
2019]. We call a subset H ⊆ K strongly inconsistent if
not just H itself is inconsistent, but also each superset up
until the entire knowledge base K; intuitively, strong incon-
sistency adapts ordinary inconsistency by taking the non-
monotonic behavior of K into account. We studied this no-
tion and its consequences thoroughly [Brewka et al., 2019;
Ulbricht, 2019]. Moreover, we generalize research on in-
consistency measurement [Thimm, 2019] to non-monotonic
logics [Ulbricht et al., 2016; Ulbricht et al., 2020]. In this
area, the goal is to quantitatively assess the severity of incon-
sistency in a knowledge base which provides deeper insights
into the nature of and culprits for the semantical collapse.

1H is a hitting set of a set S of sets if H∩S ̸= ∅ for each S ∈ S .
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2 Abstract Argumentation
Human reasoning, in particular resolving conflicts among
agents with different beliefs can oftentimes be seen as ar-
gumentative [Antaki and Leudar, 1992]. Researchers thus
study computational models of argumentation in order to ex-
plicate, resolve, and reason in the presence of conflicting
information. Formal argumentation [Baroni et al., 2018b;
Bench-Capon and Dunne, 2007] is a flourishing research area
and can nowadays be seen as one of the classical fields in AI.

2.1 Dung’s Abstract Argumentation
A main booster for research on abstract argumentation was
Phan Minh Dung’s seminal 1995 paper [Dung, 1995] where
he introduces abstract argumentation frameworks (AFs).
Dung abstracts away certain parts of the argumentation pro-
cedure, such as the internal structure of arguments derived
from a debate or premises required to infer a certain conclu-
sion: In Dung’s AFs, arguments are modeled as atomic enti-
ties a ∈ A and the conflicts between them as a binary rela-
tion R, amounting to the representation of an AF as a directed
graph F = (A,R).
Definition 2.1. An (AF) [Dung, 1995] is a directed graph
F = (A,R) where A is a set (of arguments) and R ⊆ A×A
models attacks between them.

In order to evaluate a discussion using AFs, researchers in-
vestigate so-called semantics σ whose purpose it is to formal-
ize jointly acceptable sets of arguments. Intuitively, each set
E ∈ σ(F ) of arguments is considered a reasonable point of
view w.r.t. the debate represented by F . The vast majority of
semantics which are agreed upon by the AF community are
based on the concept of admissibility (adm). This notion for-
malizes that arguments within an acceptable set E ∈ adm(F )
should not have conflicts among them and be able to refute
objections against E.
Definition 2.2. Let F = (A,R) be an AF. A set E ⊆ A of
arguments is called admissible, E ∈ adm(F ), whenever the
following two conditions hold.

• If a, b ∈ E, then (a, b) /∈ R. E is conflict-free
• If (a, b) ∈ R for some b ∈ E, then there is some c ∈ E

with (c, a) ∈ R. E defends itself
Let us illustrate this notion in the following example.

Example 2.3. Consider the directed graph depicted below
which represents an AF F = (A,R).

F : a b c

Take the singleton E = {c}. The edges in F represent attacks
among arguments, so we see that E has no internal conflict (c
does not attack itself). The only attacker of E is b, and as c
counter-attacks this threat, we infer E ∈ adm(F ).

Dung’s semantics [Dung, 1995], which are nowadays seen
as the classical ones, augment admissibility with further re-
quirements, for instance so-called preferred semantics maxi-
mize the admissible sets. AFs have been thoroughly investi-
gated ever since [Baroni et al., 2018b] and therefore provide
a solid formal groundwork for argumentative reasoning ap-
proaches to build upon them.

2.2 Weak Admissibility
Perhaps our most significant contribution to abstract argu-
mentation research was our proposal of the semantics family
based on weak admissibility. Towards illustrating this notion,
lead us recall our Example 2.3 in a slightly modified version.

Example 2.4. Consider the AF G as depicted below.

G : a b c

In G, c does not refute the attack from b anymore, so it is not
admissible this time. So let us consider a: it attacks itself and
can thus not be accepted, either. Since no other argument in G
attacks it, a also blocks acceptance of b. In summary, the only
admissible set here is the empty set, i.e., adm(G) = {∅}.

In our paper on repairing AFs we investigated under which
circumstances a semantical collapse as in the above AF G
can be resolved [Baumann and Ulbricht, 2019]. Applied to
this particular graph, our study amounts to the intuitive re-
sult that removing the argument a from the graph resolves
the aforementioned issue. However, this requires us to alter
the debate which is represented by G, because we have to
manually delete an argument. A better solution would be to
utilize semantics that can handle such situations on their own.

Let us therefore inspect the situation a bit closer. The only
reason for b to be non-acceptable is the paradoxical a, yet
arguably, a self-attacker like a should not be able to refute
reasonable arguments. Interestingly, Dung already made a
similar observation in his seminal 1995 paper [Dung, 1995]:

“An interesting topic of research is the problem
of self-defeating arguments as illustrated in the
following example. Consider the argumentation
framework

(
{A,B}, {(A,A), (A,B)}

)
. The only

preferred extension here is empty though one can
argue that since A defeats itself, B should be ac-
ceptable.”

Although a plethora of different AF semantics has been pro-
posed by the AF community within the last decades [Baroni
et al., 2018a], for the most time, no commonly agreed so-
lution to this problem was available. Striving to tackle this
issue, in 2020 we proposed a novel family of semantics based
on so-called weak admissibility and weak defense [Baumann
et al., 2020]. Based on a recursive definition, our weak ad-
missibility notion distinguishes between “serious” arguments
whose attacks need to be refuted and “non-serious” ones that
we can neglect. This induces a liberalization of Dung’s classi-
cal defense avoiding the aforementioned problematic behav-
ior; one of the core features of weak admissibility is that para-
doxical self-attacking arguments can be ignored.

Formally, weak admissibility is based on the reduct of an
AF F = (A,R): Given a set E ⊆ A of arguments, the reduct
FE is a tool to partially evaluate F . It restricts F to those
arguments that are neither contained in nor attacked by E.
Intuitively, FE partially evaluates F by setting the arguments
in E to “true”, those attacked by E to “false” and then focuses
on the remaining ones only. Based on this, weak admissibility
recursively decides which arguments are serious and which
are not, as explained above.
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Definition 2.5. Let F = (A,R) be an AF. A set E ⊆ A
of arguments is called weakly admissible, E ∈ admw(F ),
whenever the following two conditions hold.

• If a, b ∈ E, then (a, b) /∈ R. E is conflict-free
• If (a, b) ∈ R for some b ∈ E, then a /∈

⋃
admw(FE).

. Attackers of E are not serious enough to be a threat
As the reader may verify, in the above G, the singleton

E′ = {b} is indeed weakly admissible, as we desired.
Let us report two core features of weak admissibility. First

of all, weak admissibility faithfully generalizes Dung’s clas-
sical admissibility.
Proposition 2.6. [Baumann et al., 2022a] For any AF F , it
holds that adm(F ) ⊆ admw(F ).

We recall that the motivation underlying weak admissibil-
ity is that we strive to neglect the impact of paradoxical argu-
ments. Indeed, admw ignores self-attackers entirely.
Proposition 2.7. [Baumann et al., 2022a] Let F be an AF
and F ◦ be F after each self-attacker is removed. Then it
holds that admw(F ) = admw(F ◦).

We discuss further fundamental properties of weak ad-
missibility including a comprehensive comparison to related
work in [Baumann et al., 2022a; Blümel and Ulbricht, 2022].

Perhaps the most pressing future work direction consists in
finding feasible techniques to implement solvers that compute
weakly acceptable arguments. In our study [Dvorák et al.,
2022] we could show that almost all problems in this context
are PSPACE-complete, i.e., reasoning with weak admissibil-
ity is highly intractable. Finding efficient implementations is
thus a challenging endeavor for future research.

3 Structured Argumentation
In the research area of structured argumentation, arguments
are systematically derived from a given knowledge base [Ba-
roni et al., 2018b]. In this so-called instantiation proce-
dure, different conclusions as well as their conflicts within
the knowledge base are made explicit by constructing an as-
sociated AF. This way, many well-established KR formalisms
can be captured by AFs and thus enjoy the considerable re-
search which is already available for them out of the box.
Structured argumentation formalisms have been studied ex-
tensively [Baroni et al., 2018b] with prominent examples be-
ing ASPIC+ [Modgil and Prakken, 2013], defeasible logic
programming (DeLP) [Garcı́a and Simari, 2004], and deduc-
tive argumentation [Besnard and Hunter, 2001]. Most re-
search we conduct on structured argumentation focuses on
assumption-based argumentation (ABA) [Bondarenko et al.,
1997], a popular and well-investigated formalism.

3.1 Assumption-Based Argumentation
An ABA framework (ABAF) is a tuple K = (L,R,A, )
where (L,R) is a deductive system, that is, L is a language
and R a set of inference rules of the form p0 ← p1, . . . , pn
where all pi are in L. The intuitive meaning of a rule is
that the head p0 is inferred from the conjunction p1, . . . , pn.
Moreover, A ⊆ L is a set of defeasible assumptions, and the
mapping : A → L formalizes their contraries.

A commonly studied ABA fragment are so-called flat
ABAFs where assumptions cannot be entailed, only assumed
to hold or not. However, researchers also investigate more
expressive ABA classes like non-flat ABA [Bondarenko et
al., 1997] or so-called ABA+ in order to model preferences
among the given assumptions [Cyras and Toni, 2016].

The semantics of flat ABAFs resemble those of AFs in con-
sidering the interaction of sets of assumptions. For S ⊆ Awe
write S ⊢ p if we can successively infer p from the assump-
tions in S via the rules in R. If it holds that S ⊢ p and p is
the contrary of some assumption in a ∈ T , i.e., p = a, then
S we say attacks T . As in the case of AFs, S is admissible
if S does not attack itself and counter-attacks any set T of
assumptions which in turn attacks S.
Definition 3.1. Let K = (L,R,A, ) be an ABAF. A set
S ⊆ A of assumptions is called admissible, E ∈ adm(K),
whenever the following two conditions hold.

• If S ⊢ p and p = a, then a /∈ S. E is conflict-free
• If T attacks S, then S also attacks T . E defends itself

Example 3.2. Consider the ABAF K = (L,R,A, ) where
L = {a, b, c, bc, cc}, A = {a, b, c}, a = a, b = bc, c = cc,
andR is the following set of rules:

r1 : bc ← a. r2 : cc ← b. r3 : bc ← c.

This ABAF is similar in spirit to the AF F from before and
yields e.g. {c} ∈ adm(K) as the reader might verify.

ABA and AFs are similar in their spirit, so each flat ABAF
K can be translated into a semantics-preserving AF FK, a
procedure which is referred to as instantiation in the argu-
mentation community [Baroni et al., 2018b]. Not just ABA,
but many KR formalisms can be captured by AFs this way.

3.2 Expressive Instantiations and Implementations
Instantiations of this kind are a popular technique in argumen-
tation research: the constructed graph provides the user with
a comprehensible graphical depiction of the conflicts arising
in the given knowledge base. Moreover, the plethora of re-
search which is available for AFs can then be applied to the
knowledge base K that has been translated into the AF FK.

There are, however, two issues which are common for such
instantiations:

• Not all structured argumentation formalisms can be cap-
tured by means of an AF, because they have features AFs
cannot model. The aforementioned advantages are thus
not available in those cases.

• Even if the knowledge base can be captured by an AF,
the instantiated graph is oftentimes unacceptably large.
This diminishes the advantages of the whole procedure
due to the sheer number of constructed arguments.

Our most recent research strongly focuses on these issues.
Striving to overcome them, we first observe that different
types of ABA frameworks have different modeling capabil-
ities, as we studied in [Berthold et al., 2023b]. Awareness of
their expressiveness helps us in identifying the features neces-
sary to capture such knowledge bases. As a result, we utilized
the following expressive abstract argumentation formalisms.
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Collective Argumentation: An important tool are argumen-
tation formalisms that allow for attacks between sets of argu-
ments. For instance, argumentation frameworks with collec-
tive attacks (SETAFs) [Nielsen and Parsons, 2006] can model
situations where several arguments are necessary to defeat an-
other one. Moreover, so-called HYPAFs can even model set-
to-set attacks among arguments [Gabbay and Gabbay, 2016].

Supporting Arguments: Another extension of AFs are so-
called bipolar argumentation frameworks (BAFs) [Cayrol
and Lagasquie-Schiex, 2005]. In addition to attacks, BAFs
can also model arguments supporting each other.

As it turns out, these features – collective attacks and sup-
ports between arguments – are the missing building blocks in
order to capture popular, expressive ABA formalisms.
Theorem 3.3. There is a semantics-preserving translation

• from non-flat ABA to BAFs [Ulbricht et al., 2024];
• from ABA+ to HYPAFs [Dimopoulos et al., 2024].
Moreover, even existing instantiation techniques can be en-

hanced. While the known translation from flat ABA to AFs
yields infinitely many arguments in general, we can capture
any flat ABA knowledge base K with a SETAF that has only
linearly many arguments (in |K|).
Theorem 3.4. There is a semantics-preserving translation

• from flat ABA to SETAFs [König et al., 2022]
admitting linearly many arguments.

Perhaps the most surprising observation is that in many
of these cases, the constructed argumentation graph ad-
mits a lower computational complexity compared to the ini-
tial knowledge base. We study this thoroughly in the re-
spective works [Ulbricht et al., 2024; Dimopoulos et al.,
2024]. Hence, there is a computational cost for construct-
ing the graph (BAF resp. HYPAF), but once it has been paid,
many reasoning problems can be solved more efficiently.
We thus implement instantiation-based solvers for non-flat
ABA [Lethonen et al., 2024] and indeed, the resulting solver
is competitive with state-of-the-art approaches which com-
pute accepted assumptions on the knowledge base K directly.

While these results promote the usage of expressive ar-
gumentation formalisms to capture ABAFs, there is also a
significant potential in enhancing the efficiently of AF-based
instantiations. We showed that any flat ABAF K can be
translated into an AF FK of polynomial size (in K) if the
knowledge base K is suitably preprocessed [Lehtonen et al.,
2023]. This approach also resulted in an instantiation-based
solver [Lehtonen et al., 2021]. We also want to mention our
approach [Anh and Ulbricht, 2024] which operates on an aux-
iliary graph in order to compute acceptable assumptions.

These results are encouraging steps towards our overall
goal of establishing a stronger connection between expressive
structured and abstract argumentation. Nonetheless, we still
need better means to compute argumentation graphs more ef-
ficiently, in order to enhance instantiation-based solvers even
further. Many of the aforementioned formalisms need to
be studied more thoroughly in terms of their computational
properties, similar in spirit to our study of SETAFs [Dvorák
et al., 2024]. This is necessary to lay the foundations for more
advanced instantiation techniques.

3.3 Dynamics and Structured Argumentation
Instantiations as discussed in the previous subsection are tai-
lored for static reasoning environments, i.e., situations where
the given knowledge base K persists. However, exchang-
ing arguments is a continually evolving process, which in-
spired the investigation of dynamics, i.e., knowledge bases
that change over time [Gabbay et al., 2021]. For instance,
researchers study situations where further arguments are
brought forward in a debate or additional rules are added.

However, the connection between an ABAF K and its con-
structed AF FK is not close enough to handle situations of
this kind [Prakken, 2023]. Indeed, in our studies dealing with
dynamic reasoning tasks in ABA, we realized that we had to
produce results from scratch [Rapberger and Ulbricht, 2023;
Berthold et al., 2023a] despite the close correspondence be-
tween ABA and AFs as well as the fact that these problems
had been studied for AFs before.

Driven by this observation, our goal was to come up
with an instantiation technique that is also suitable for dy-
namic reasoning, i.e., we strive to equip arguments with ad-
ditional information in order to better anticipate their role af-
ter the underlying knowledge base is extended. The appro-
priate tool are so-called semi-structured argumentation for-
malisms [Baumann et al., 2022b; Rapberger and Ulbricht,
2023]. For instance, our idea in [Rapberger and Ulbricht,
2023] is to consider an extension of AFs, called claim and
vulnerability augmented AFs (cvAFs), where each argument
is augmented with the conclusion it represents as well as the
premises which are necessary to entail it. In this study, we
could show that this instantiation technique provides suffi-
cient information in order to capture a significant subclass
of ABA in both static and dynamic reasoning environments.
In addition to its conceptual significance, our study provides
insights towards computational improvements for solving dy-
namic tasks in ABA. Moreover, we could showcase that our
methodology also scales to other structured formalisms.

The results we established thus far are, however, quite the-
oretical and the actual implementation of efficient solvers for
dynamic reasoning building upon our techniques is still open.
Moreover, our cvAFs extend AFs as proposed by Dung, but
as we saw in the previous subsection, expressive argumenta-
tion formalisms like SETAFs or BAFs provide us with signif-
icant improvements when connecting abstract and structured
argumentation. This potential can only be fully utilized when
studying more expressive semi-structured formalisms.

4 Conclusion
Symbolic AI techniques provide transparency, robustness,
and interpretability in decision-making processes, and thus
complement statistical machine learning approaches. For-
mal argumentation in particular plays a central role as it can
capture various KR formalisms, thereby providing a descrip-
tive, visual, and argumentative representation of the encoded
knowledge. The foundational work outlined in this paper es-
tablishes vital theoretical underpinnings for harnessing the
full potential of formal argumentation. This way, we push the
developments of argumentation, which promises advances for
future challenges within its rich application areas.
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