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Abstract

Interactive and interpretable robot learning can
help to democratize robots, placing the power of
assistive robotic systems in the hands of end-
users. While machine learning-based approaches
to robotics have achieved impressive results, robot
learning is still a feat of costly engineering per-
formed in controlled settings and relying upon im-
practical assumptions about humans. To achieve
a vision in which robots can be integrated sus-
tainably into our daily lives for robotic assistance,
researchers must take a human-centered approach
and develop novel approaches for human-robot
alignment of robot values and behaviors. This
paper amalgamates recent human factors insights
and computational techniques that can support
human-robot alignment through interactive and in-
terpretable robot learning and teaming.

1 Introduction
Robots have the potential to support every aspect of our daily
lives, beyond the dull, dirty, and dangerous (3D) tasks roboti-
cists have traditionally focused on [Takayama et al., 2008].
One such area is in supporting adults with mild cognitive
impairment (MCI) who often need nursing care and to live
with a care partner who manages their activities of daily
living (ADL). Yet the cost of at-home nursing has risen to
exceed household disposable income [PRNewswire, 2016;
Prince and Fantom, 2014], and there is a worsening nursing
shortage [Institute of Medicine, 2010]. Labor shortages will
impact almost every sector due to decreased human fertility
globally [Skakkebæk et al., 2022]; while robots may not be
a perfect solution today [Wright, 2023], they may be a nec-
essary boon. Beyond the crises on Earth, robots may be the
primary avenue we have to explore the solar system [Jayanthi
et al., 2023] or galaxy due to our fragile, finite bodies, the
vastness of space, and the cosmic speed limit, c.

Traditionally, developing and deploying robots has re-
quired an army of consultants to program and install fixed
robotic systems that are expensive and not easily adapted to
dynamic user needs. This approach has only been successful
in industries where economies of scale and relatively static,

standardized product lines were available, such as in automo-
tive manufacturing. Further, these robots are typically caged
off from human workers due to their lack of safety, adapt-
ability, and interactivity. However, the ubiquitous robots en-
visioned in this paper need a scalable approach that goes be-
yond these hand-crafted, expert systems.

Researchers have made tremendous progress in automat-
ing the process of developing robot controllers through Re-
inforcement Learning (RL) but have not solved the problem
of removing the human expert. Unfortunately, applying RL
to real-world scenarios typically relies upon extensive, hu-
man reward engineering, hyperparameter tuning, and trial-
and-error design of ad hoc neural network architectures that
cannot generalize across tasks and domains. Fundamentally,
these classes of approaches attempt to learn tabula rasa, and
we lack informative priors on robot exploration by which
robots can quickly synthesize new control policies without
human intervention.

In contrast, the field of interactive robot learning[Seraj et
al., 2024] seeks to get the best of both worlds between RL
and expert systems by enabling robots to learn from human-
robot interaction (HRI), including human task demonstra-
tions (i.e., Learning from Demonstration (LfD)) [Chen et al.,
2021], natural language instruction and feedback [Silva et al.,
2021; Tambwekar et al., 2023], accessible programming in-
terfaces [Nina Moorman and Gombolay, 2023], and more.
There is a groundswell of initiatives to push interactive robot
learning to its limits, such as by curating large-scale datasets
and leveraging foundation models.

Yet, despite decades of research, interactive robot learning
systems are not deployed in the real world and fall short in
practice because, among many factors, researchers typically
assume humans are ’oracles’ that are devoid of the myriad of
human cognitive biases that confound our models. For exam-
ple, researchers have shown that there is a disconnect between
what people say they are doing and what people actually do
when accomplishing a task [Bilalić et al., 2008]. Further, hu-
mans do not understand robots – how robots perceive, make
decisions, and act – known as the correspondence problem.
Thus, interactive robot learning frameworks fail to be truly
interactive as the robot cannot provide insight as an action-
able feedback signal to the human.

This paper presents computational techniques and human
factors insights toward democratizing robot learning: plac-
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ing the power of robot learning in the hands of non-roboticist
end-users. The contributions presented support the design
of robots that learn from end-user interaction – without the
need for a roboticist – to align the robot’s behaviors and val-
ues. This paper defines the problem of aligning behaviors
as synthesizing a robot control policy that produces actions,
conditioned on observations of the world, that abide by what
the human would want the robot to do given that informa-
tion. Conversely, aligning robot values enables the robot to
infer the correct constrained optimization describing the hu-
mans’ desired outcomes. Behavior alignment is means-driven
whereas value alignment is outcome-driven. Both are needed
to enable true alignment.

The proposed framework enables robots to (1) learn mod-
els of human values and behaviors, such as through novel In-
verse RL (IRL) techniques, (2) explain to the human what
the robot has learned through advances in interpretable and
explainable Artificial Intelligence (xAI), and (3) scale this
closed-loop HRI up to enabling multiple, heterogeneous hu-
mans and robots to coordinate activities at scale for ad hoc
human-robot teaming. Key to this work is exploring vari-
ous latent and observable (e.g., the mode of human instruc-
tion) factors that confound the ability to precisely infer and
align a human end-users desired values and behaviors with a
robots’. This paper argues that researchers cannot assume a
spherical human1 and demonstrates the tremendous advances
in robot capabilities when the correspondence problem is ap-
propriately tackled.

2 Learning from Humans to Robots
Robot learning from human interaction can serve three key
supporting roles, enabling robots to acquire skills for task
performance (e.g., LfD to perform 3D tasks) [Gombolay et
al., 2018a], anticipate future human behavior so that the
robot can perform complementary actions supporting the hu-
mans [Paleja et al., 2024], and even assess human task per-
formance, e.g. for tutoring [Gombolay et al., 2017] or even
robots teaching humans to be better robot teachers [Schrum
et al., 2022a].

These aspects of robot learning can be grounded in a
Markov decision process (MDP) formalism for human-robot
behavior and value alignment. This problem of alignment
takes as input an MDP without a known reward function
(MDP\R) as a 4-tuple, ⟨S,A, T, γ, ρ⟩, where s ∈ S is a
state of the world, a ∈ A is an action that can be performed,
T : S × A × S′ → [0, 1] is the probability of transition-
ing s′ given action a in s, a discount factor, γ, prioritizing
accruing short-vs. long-term reward, and ρ : S → [0, 1]
is a distribution over initial states. The reward function,
R : S × A × S′ → R, is omitted as it is a latent variable
in the human teacher’s mind.

The goal for the robot learner is to take this MDP \R along
with human data, D (e.g., human demonstrations as a se-
quence of human states or actions, natural language, etc.) and
output either an aligned behavioral policy, π∗ : S × A →
[0, 1], as a probability distribution over actions aligned with

1Derived from the physics joke: “Assume a spherical cow...”

human expectations or an aligned value (i.e., reward) func-
tion, R∗, where ∗ denotes that the policy is perfectly aligned.
There are a variety of techniques for reverse engineering a
policy or reward function including inverse RL (IRL) which
seeks to learn a reward function and policy simultaneously,
and Behavior Cloning, which learns a policy directly.

However, reverse engineering humans’ values or behav-
ioral policies is confounded by the stochastic, inconsis-
tent, and misleading data people provide. As noted ear-
lier, prior work has shown people have difficulty faithfully
describing their decision-making processes [Bilalić et al.,
2008]. For applications of interactive robot learning in expert
domains (e.g., healthcare), naturalistic decision-making re-
search shows that experts may not even think in a rules-based
fashion that can be articulated [Klein, 2008]. Lastly, even
experts exhibit suboptimal and diverse strategies for accom-
plishing the same task, which can thwart robot learning algo-
rithms that are best suited for learning from idealized data.

This section presents state-of-the-art technical approaches
to address the need to learn from suboptimal and diverse
forms of human feedback (Section 2.1) as well as guidelines
from human-subject experiments for how to design for suc-
cessful interactive robot learning (Section 2.2).

2.1 Learning from Diverse, Suboptimal Humans
Prior work has shown that even human experts, e.g. commer-
cial aviation pilots, exhibit behavior so diverse on the same
task that it is more practical to learn separate robot policies
aligned to each human rather than pooling data across demon-
strators [Sammut et al., 1992]. However, this is far from ideal,
as end-users would then need to train each robot from scratch,
which may be time- and cost-prohibitive. Ideally, interactive
robot learning methods should be able to leverage data from
a cohort of demonstrators to mitigate the curse of dimension-
ality and achieve a higher degree of personalized alignment.

Towards this vision of sample-efficient, personalized align-
ment with diverse demonstrators, this paper presents Multi-
Style Reward Distillation (MSRD) [Chen et al., 2020], which
learns from a dataset of humans performing a common task
but doing so while exhibiting varying preferences or strate-
gies. The key to MSRD is employing neural network dis-
tillation in an adversarial IRL [Fu et al., 2018] setup in
which a reward function-based discriminator learns from all
demonstrators what is common (i.e., the task reward) while
preference-specific discriminators learn the components of
the humans’ rewards that are strategy-specific (i.e., the strat-
egy reward). MSRD was extended to relax the assumption of
annotated strategies and allow for online, incremental learn-
ing from a growing population of end-users with Fast Life-
long Adaptive Inverse Reinforcement learning from demon-
strations (FLAIR) [Chen et al., 2023]. FLAIR demonstrated
on a physical robot table tennis setup for teaching strokes that
FLAIR objectively and subjectively performs human-robot
alignment better than user-specific models.

Suboptimal performance in teaching robots is a second
challenge for robot learning. An effective strategy in cases
where human suboptimality is due to problem scale or work-
load [Molina et al., 2018] is to have robots learn a size-
invariant behavior model from human task performance on
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smaller problems and scale that learned model up to larger
problem sizes. This is an effective strategy when human
workload is a key driver of suboptimality and has demon-
strated effectiveness for human-robot alignment in health-
care [Gombolay et al., 2018b], manufacturing [Gombolay et
al., 2018a], and military domains [Gombolay et al., 2018a].

When suboptimality is intrinsic to the human’s demonstra-
tion of the task, regardless of workload, Self-Supervised Re-
ward Regression (SSRR) is an effective LfD technique for
learning to perform a task better than what the human was
able to demonstrate without needing to ask the human what
“better” means [Chen et al., 2021]. Inspired by prior work
by [Brown et al., 2019], SSRR learns an idealized reward
function by imitating the human demonstrator, automatically
generating worse behavior by adding noise to the robot’s ac-
tions, and then inferring what the behavior would look like if
it were less noisy than the human demonstration. The key to
SSRR is a proper characterization of the noise-performance
relationship and accounting for the covariate shift induced in
learning from real human and synthetic, noisy data to extrap-
olate beyond the performance of the human demonstrator.

Robots can also account for suboptimality by correct-
ing the human data before learning the behavior. Mu-
tual INformation-Driven MEta-Learning from Demonstration
(MIND MELD) is a technique in which robots learn a person-
alized calibration model of corrective human actions (e.g., as
delayed/anticipatory or over-/under-corrective) and then ap-
ply that model to compensate for each person’s unique sub-
optimality on a novel LfD task [Schrum et al., 2022b].

Lastly, safety is critical for interactive robot learning with
real end-users. Offline learning, in which the robot does not
need to learn through trial and error, is a valuable approach in
safety-critical applications of machine learning (ML). Dual
Reward and policy Offline Inverse Distillation (DROID) is
a technique that grounds the framework of MSRD in an of-
fline setting as was successfully applied to inferring the per-
sonalized values of NASA Jet Propulsion Laboratory Rover
Planners in how they design paths for the Mars Curiosity
Rover [Jayanthi et al., 2023]. Safe behavior and values can
also be taught by human demonstrators, such as by jointly in-
ferring the human demonstrator’s preferences and constraints
for a task in the form of a reward function and a set of neural
certificate barrier functions in a framework called SECURE
(ShiElding with Control barrier fUnctions in inverse REin-
forcement learning) [Yang et al., 2024].

2.2 Human-centered Design Principles
It is critical for researchers to study non-roboticists and char-
acterize the psychology of interactive robot learning. Mo-
tivated by a focus on developing assistive robots for ADL,
researchers have worked with older and younger adults to
ascertain their attitudes towards what modes of robot learn-
ing interactions are most usable and how those modes im-
pact perceptions of robot anthropomorphism and user work-
load [Moorman et al., 2023; Botti et al., 2024]. Importantly,
blame attribution depends on demographics: some popula-
tions are more likely to blame themselves for a robot’s failure
than to blame the robot (or the engineer who developed the
robot system). Further, people bestow upon the robot a sense

of agency in which a person judges their own competence as
a teacher based upon what they believe the robot thinks about
them [Hedlund et al., 2021]. These experiments show the im-
portance of applying universal design principles to account
for homophily and the role of end-user personality traits and
backgrounds to achieve democratized robot learning [Schrum
et al., 2024; Hedlund et al., 2021; Schrum et al., 2021;
Tambwekar and Gombolay, 2023].

3 Learning from Robots to Humans
Humans must be supported in situated learning interactions
with robots. Yet, modern learning frameworks are typically
one-way (i.e., human-to-robot) and black-box (i.e., humans
cannot inspect the inner-workings of the robot’s learning pro-
cess). This section presents methods to ameliorate these lim-
itations to achieve closed-loop interactive robot learning.

3.1 Algorithmic Insights to Support Humans
Interpretability in learning is key for safety-critical domains,
where humans must inspect and simulate the inner work-
ings of robots. DTs are a gold standard in such domains
but are difficult to leverage due to a conflict between their
non-differentiable structure and modern reliance on gradient-
based learning [Rudin et al., 2022]. New optimization tech-
niques and models for differentiable DTs have been devel-
oped that learn interpretable robot behavior policies through
RL [Silva et al., 2020; Paleja et al., 2022]. This work has been
extended to Personalized Neural Trees (PNTs) for learning
from diverse human demonstrations in which the DT learns
and operates over state variables and personalized embed-
dings via variational inference [Paleja et al., 2020]. These
DTs can support explanatory debugging in interactive robot
learning [Tambwekar and Gombolay, 2023].

As a complementary approach to model interpretability,
robots can also provide explainable feedback to humans on
how to improve their demonstrations to robots in LfD. Re-
ciprocal MIND MELD leverages the MIND MELD frame-
work to dynamically predict how a user is suboptimal on
a sequence of teaching tasks and, at each iteration of the
sequence, provide adaptive feedback to further enhance the
quality of the human’s demonstrations. This approach can
improve the performance of the robot in aligning its behav-
ior to human expectations through this iterative teaching ap-
proach [Schrum et al., 2022a].

3.2 Human-centered Design Principles
Central to interactive robot learning is the need for the hu-
man teacher to develop a mental model of the robot’s learn-
ing process. This mental model supports the human in de-
bugging misalignment in robot values or behavior. Yet, prior
work has shown that humans can get worse at teaching robots
when trouble-shooting only based upon watching the robots’
attempts at performing tasks with black-box models [Gopalan
et al., 2022]. As such, it is critical for robot learning to sup-
port explanatory debugging with interpretable models (e.g.,
DTs) or other faithful, xAI techniques.

A challenge here is that explainability is in the eyes of the
beholder [Silva et al., 2023]. Various types of explainabil-
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ity, such as decision trees (DTs) and counterfactual reason-
ing, can have a positive or negative impact on end-users de-
pending on demographics [Gombolay et al., 2024]. Users can
even exhibit counterproductive preferences for how a robot
explains its reasoning [Silva et al., 2024]. Thus, it is critical
to take a human-centered approach to developing xAI.

4 Scaling from Dyads to Teams
To scale interactive and interpretable robot learning for team-
ing, e.g. for disaster response [Seraj et al., 2023], manufac-
turing [Gombolay et al., 2018a], and healthcare [Gombo-
lay et al., 2018b], these frameworks must account for “non-
spherical” aspects of human task performance and support
humans in communicating their values for team coordination.

4.1 Modeling Human Performance in Teams
The performance characteristics of human work in industrial
settings are stochastic and time-varying. Season manufactur-
ing is a prime example where workers must be hired, trained,
and employed over months during which their performance
never plateaus. As such, robots that learn to coordinate the
activities of human-robot teams in these settings ought to
not only model this variable performance but explore which
workers are best suited for which tasks. Prior work has de-
veloped models and team scheduling frameworks that per-
form this integrated modeling of human performance and an
adaptive, extended Kalman filter to capture that humans are
stochastic and learn (and generalize that knowledge) to per-
form tasks better with repetition [Liu et al., 2021]. In validat-
ing this approach, the researchers found that human subjects
working with robot teammates in an analog manufacturing
setup favored robots that effectively balance this exploration-
vs.-exploitation trade-off [Liu et al., 2021].

This work was recently extended to leverage graph neu-
ral networks (GNNs) for function approximation in learn-
ing to coordinate these human-robot teams [Altundas et al.,
2022]. GNNs are apt in learning coordination policies via
RL [Altundas et al., 2022] or from demonstration [Wang et
al., 2022] on smaller-scale coordination problems and scal-
ing that learned model to large-scale problems – a technique
for handling suboptimality discussed in Section 2.1. Prior
work has also shown that GNNs can be parameterized with
the diverse values of human operators for alignment of team
coordination [Wang et al., 2022].

4.2 Supporting Humans in Aligning Coordination
While interactive robot learning techniques are typically ap-
plied for robot skill learning with a single human teaching a
single robot, these approaches can be designed to learn from
humans how to coordinate teams of robots. As presented
in Section 2.1, PNTs were designed to learn from human
scheduler demonstrations for how those humans would co-
ordinate mixed teams of human and robot workers [Paleja et
al., 2020]. PNTs are also interpretable once optimized into
a discrete, symbolic, tree structure, which supports humans
in explanatory debugging. Users could explicitly modify the
tree through a user interface or replace/augment demonstra-
tions that did not result in the intended learning effect.

Moving away from typical, symbolic scheduling tasks, re-
searchers have also sought to develop interactive techniques
for humans to program distributed teams operating under par-
tial observability and communication limitations (e.g., due
to limited radio and sensor ranges) [Seraj et al., 2023]. In
such domains, teaming requires the distributed team mem-
bers to act both physically within the environment and com-
municate with their team members to develop team situa-
tional awareness and properly coordinate activities. How-
ever, it is difficult for humans to teach their values for act-
ing and communicating simultaneously, as demonstrated by
prior work [Seraj et al., 2023]. This work developed a rem-
edy: Mixed-iniTiative mUlti-agent appRenticeship lEarning
(MixTURE), which supports the human in aligning the val-
ues of a distributed, multi-agent team. The approach works
by affording humans global situational awareness and a pro-
gramming interface to command robot actions. These robots
then must learn to align their behavior with the human’s in-
structions by (1) automatically learning how to communicate
the right information and to whom and (2) learning decentral-
ized action and communication models, as there is no global
situational awareness at test time. MixTURE showed positive
subjective and objective results against baselines in applica-
tion to a virtual, multi-agent wildfire fighting environment.

5 Discussion, Limitations, and Future Work

This paper has presented the need for and approaches for
achieving democratized robot learning through interactivity
and interpretability. Critical to the success of this work is
taking a human-centered approach and conducting human-
subject experiments with non-roboticists to inform the design
of and validate these interactive and interpretable robots.

Despite the advances presented in this paper, interactive
and interpretable robot learning is still hiding within research
laboratories rather than actualized in homes and workplaces.
This limitation is due to a numerous list of challenges, in-
cluding the cost of robot hardware, the need for even bet-
ter sample efficiency, the difficulty in collecting real-world
data, and the fact that robots do not have the inductive biases
and common-sense reasoning abilities that are part and par-
cel with human intelligence. In future work, research in in-
teractive robot learning needs to suss out whether foundation
models are the proverbial holy grail as a foundation for robot
learning or merely a detour. Research in interpretable ML is
still in its infancy and, while DTs are powerful, ultimately it
is difficult to precisely explain complex behavior in a sparse
model. Thus, further work is needed to develop the right lev-
els of abstraction for the right context to support explanatory
debugging and appropriate trust in robotic systems.

There are also ethical issues that must be addressed to
safely deploy robotic systems. These issues include the need
to identify [Hundt et al., 2022] and remove [Silva et al., 2022]
toxic reasoning in foundation models governing robot behav-
ior. Further, robots supplanting human work could result in
psychological and material harm [Schrum et al., 2021]. These
and other ethical issues must be judiciously studied to afford
a safe rollout of these emerging technologies.
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