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Abstract
Deep learning models have repeatedly shown their
strengths in various application domains. However,
their predictions often struggle to meet background
knowledge requirements, which is a crucial condi-
tion for safety-critical systems. My research fo-
cuses on integrating requirements into neural net-
works to guide the learning process and ultimately
produce outputs that ensure the requirements’ satis-
faction. Here, I will discuss my proposed methods
in the context of two real-world applications: tabu-
lar data generation and autonomous driving.

1 Introduction
Deep learning models have shown their strengths in various
application domains, however, they often struggle to meet
safety requirements for their outputs. Neuro-symbolic AI
aims at addressing this issue by interlinking neural networks
(NNs) with symbolic reasoning. Such existing methods can
be broadly classified into two categories. The first com-
prises methods able to integrate the requirements in the loss
function and penalize the models when they violate the re-
quirements (e.g., [Diligenti et al., 2012; Xu et al., 2018;
Badreddine et al., 2022]), while the second category con-
tains methods able to incorporate requirements (also called
constraints) directly in the topology of the network (e.g.,
[Giunchiglia and Lukasiewicz, 2021; Hoernle et al., 2022;
Ahmed et al., 2022]) and, thus, guarantee their satisfaction.
Here, I will discuss my work on developing such methods
for two real-world application domains: synthesizing tabular
data and autonomous driving.

2 Deep Generative Modeling for Tabular Data
with Requirements

From enhancing predictive performance in ML models to
ensuring privacy in sensitive settings, synthesizing methods
are increasingly used in real-world domains (e.g., generating
health records or credit scoring data). Often, there are in-
herent relations between tabular data features that synthetic
samples must satisfy to be considered realistic. For example,
in a dataset containing medical records for patients with dia-
betes, suppose we have two features capturing the minimum

and the maximum recorded haemoglobin levels. Naturally,
the real data do not contain any records where the minimum
level is higher than the maximum level. This is a background
knowledge (BK) requirement easily captured by the linear
constraint MaxHaemoglobin− MinHaemoglobin ≥ 0.

Research questions. My main research questions are:

R1 How often do standard models violate such constraints?

R2 Does BK improve the quality of the synthetic data?

R3 Can BK injection act as a guardrail during inference and
ensure that the constraints are satisfied?

Proposed method. Following the branch of neuro-symbo-
lic works that embed requirements into the NNs’ topology,
my proposed approach [Stoian et al., 2024] consists of build-
ing a constraint layer (CL) on top of a given deep generative
model (DGM). The result is a Constrained DGM (C-DGM),
which guarantees that the constraints are satisfied by the gen-
erated synthetic data. The CL automatically compiles the
BK expressed as linear constraints and corrects the model’s
predictions. An extensive experimental analysis using five
DGM types and six real-world datasets reveals that stan-
dard DGMs often violate constraints, some exceeding 95%
non-compliance (R1), while their corresponding C-DGMs
are never non-compliant. Additionally, at training time, C-
DGMs are able to exploit the BK to outperform their baseline
counterparts over two standard measures, utility and detec-
tion, with up to 6.5% improvement in the utility F1-score.
Furthermore, the CL can also be used only at inference time,
acting as a guardrail (R3), but still producing some improve-
ments in the overall performance of the models. For a qualita-
tive assessment, Figure 1 illustrates how the CL-based model
not only ensures that the example constraint above is satis-
fied, but also that the generated samples better match the real
data relatively to the baseline model’s samples. Finally, and
particularly relevant for real-world scenarios, the experiments
show that the CL does not hinder the sample generation time.

3 Autonomous Driving with Requirements
Neural networks have been at the core of the recent devel-
opments in the autonomous driving field. However, standard
models are data-driven and can lead to unpredictable behav-
iors. For instance, a multi-label classification model for the
vision component of a self-driving system might erroneously
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Figure 1: Real data (left) and samples generated by a Baseline DGM
(middle) and a Constrained DGM model using CL (right).

classify a traffic light as both red and green at the same time.
Naturally, such models can easily lead to catastrophic out-
comes. Aiming at mitigating this problem, injecting proposi-
tional logic constraints via a t-norm-based loss term is a pop-
ular neuro-symbolic method [Giannini et al., 2023], which
allows NNs to have access to BK during training and learn to
adjust their predictions accordingly. However, t-norm-based
losses may have very high memory costs and may be impos-
sible to apply in complex domains like autonomous driving.
Research questions. My main research questions are:
Q1 How many constraints do standard methods support?
Q2 Is it possible to design a memory-efficient method to ac-

count for a large number of constraints?
Q3 Does BK improve the quality of the outputs?
Q4 Does BK help in a semi-supervised setting?
Proposed method. My approach [Stoian et al., 2023] for-
malizes memory-efficient t-norm-based losses, allowing for
exploiting t-norms for event detection in autonomous driv-
ing. It relies on the intuition that in practice most of the
constraints are written over a small subset of the available
labels. As a result, the matrices encoding the requirements
contain mostly zeros. Hence, my proposed method makes
use of this sparsity property and ultimately avoids the high
computational costs induced by the 3D matrices, operating
only on 2D matrices (Q2). Figure 2 demonstrates a signif-
icant reduction in memory costs, enabling the utilization of
t-norm-based losses on the large-scale ROAD-R autonomous
driving dataset [Giunchiglia et al., 2023]. The standard im-
plementation supports a maximum of 40 constraints (Q1),
falling short by 203 constraints compared to ROAD-R. More-
over, my proposed approach allows model training on GPUs
with 25 GiB memory, whereas the standard method would re-
quire over 100 GiB for ROAD-R, far exceeding typical avail-
able memory capacities. Furthermore, through an extensive
experimental analysis on the ROAD-R dataset in two of my
works [Stoian et al., 2023; Giunchiglia et al., 2023], I show
that t-norm-based losses improve the models’ performance
(Q3), especially for limited labelled data. Finally, the exper-
iments show t-norm-based losses can further improve perfor-
mance when exploited on labelled and unlabelled data (Q4).

4 Conclusion and Future Work
My research follows the principles of neuro-symbolic inte-
gration, with a particular focus on making neuro-symbolic AI
more accessible for real-world applications. As future work, I
am planning on bridging the two approaches above to support
both propositional and linear constraints.

Figure 2: Comparison between the standard approach (in purple)
and my proposed memory-efficient approach using sparse represen-
tations (in green) in terms of GPU memory allocated when using dif-
ferent numbers of constraints. Each point on the continuous (resp.,
dashed) lines corresponds to an actual observation (resp., estimate).
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