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Abstract
Partially observable Markov decision processes (POMDPs)
provide a flexible representation for real-world decision and
control problems. However, POMDPs are notoriously diffi-
cult to solve, especially when the state and observation spaces
are continuous or hybrid, which is often the case for phys-
ical systems. While recent online sampling-based POMDP
algorithms that plan with observation likelihood weighting
have shown practical effectiveness, a general theory char-
acterizing the approximation error of the particle filtering
techniques that these algorithms use has not previously been
proposed. Our main contribution is bounding the error be-
tween any POMDP and its corresponding finite sample parti-
cle belief MDP (PB-MDP) approximation. This fundamental
bridge between PB-MDPs and POMDPs allows us to adapt
any sampling-based MDP algorithm to a POMDP by solv-
ing the corresponding particle belief MDP, thereby extend-
ing the convergence guarantees of the MDP algorithm to the
POMDP. Practically, this is implemented by using the parti-
cle filter belief transition model as the generative model for
the MDP solver. While this requires access to the observa-
tion density model from the POMDP, it only increases the
transition sampling complexity of the MDP solver by a factor
of O(C), where C is the number of particles. Thus, when
combined with sparse sampling MDP algorithms, this ap-
proach can yield algorithms for POMDPs that have no direct
theoretical dependence on the size of the state and observa-
tion spaces. In addition to our theoretical contribution, we
perform five numerical experiments on benchmark POMDPs
to demonstrate that a simple MDP algorithm adapted us-
ing PB-MDP approximation, Sparse-PFT, achieves perfor-
mance competitive with other leading continuous observation
POMDP solvers.
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