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Abstract
Bayesian inference in deep neural networks is
challenging due to the high-dimensional, strongly
multi-modal parameter posterior density landscape.
Markov chain Monte Carlo approaches asymptot-
ically recover the true posterior but are consid-
ered prohibitively expensive for large modern ar-
chitectures. We argue that the dilemma between
exact-but-unaffordable and cheap-but-inexact ap-
proaches can be mitigated by exploiting symme-
tries in the posterior landscape. We show the-
oretically that the posterior predictive density in
Bayesian neural networks can be restricted to a
symmetry-free parameter reference set. By further
deriving an upper bound on the number of Monte
Carlo chains required to capture the functional di-
versity, we propose a straightforward approach for
feasible Bayesian inference.

1 Introduction
Bayesian neural networks (BNNs) are a probabilistic formu-
lation of deep learning models and as such provide uncer-
tainty quantification (UQ) in a principled manner. A key com-
ponent of Bayesian learning is the parameter posterior density
that assigns a posterior probability to each parameter value
[Hüllermeier and Waegeman, 2021]. However, the parame-
ter posterior for BNNs is typically highly multi-modal and
rarely available in closed form. The classical Markov chain
Monte Carlo (MCMC) approach asymptotically recovers the
true posterior but is considered prohibitively expensive for
BNNs, as the large number of posterior modes prevents a rea-
sonable mixing of chains [Izmailov et al., 2021]. Popular ap-
proximation techniques, such as Laplace approximation (LA)
[MacKay, 1992; Daxberger et al., 2021] or deep ensembles
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(DE) [Lakshminarayanan et al., 2017], therefore focus on lo-
cal regions of the posterior landscape. While these methods
are faster than traditional MCMC and perform well in many
applications, they systematically omit regions of the parame-
ter space that might be decisive for meaningful UQ [Izmailov
et al., 2021].

In this work, we challenge the presumed infeasibility of
MCMC for neural networks (NNs) and propose to exploit
the—in this context, rarely considered—unidentifiability
property of NNs, i.e., the existence of two or more equiv-
alent parameter values that describe the same input-output
mapping. We refer to these equivalent values as equiout-
put parameter states. These emerge from certain activation
functions [Kůrková and Kainen, 1994; Chen et al., 1993;
Petzka et al., 2020], as well as the free permutability of neu-
ron parameters in hidden layers [Hecht-Nielsen, 1990], and
can be transformed into one another.
Our Contributions. We analyze the role of posterior space
redundancies in quantifying BNN uncertainty, making the
following contributions: 1) Rather than sampling the entire
parameter space, we show that the full posterior predictive
density (PPD) can be obtained from a substantially smaller
reference set containing uniquely identified parameter states
in function space. 2) We propose an estimation procedure
for the number of Monte Carlo chains required to discover
functionally diverse modes, providing a practical guideline
for sampling from the parameter space of multi-layer percep-
trons (MLPs). 3) We supply experimental evidence that our
approach yields superior predictive performance compared to
standard MCMC and local approximation methods.

2 Background and Notation
In this work, we consider NNs of the following form. Let
f : X → Y represent an MLP with K layers, where layer
l ∈ {1, . . . ,K} consists of Ml neurons, mapping a fea-
ture vector x = (x1, . . . , xn)

⊤ ∈ X ⊆ Rn, n ∈ N, to
an outcome vector f(x) =: ŷ = (ŷ1, . . . , ŷm)⊤ ∈ Y ⊆
Rm, m ∈ N, to estimate y = (y1, . . . , ym)⊤ ∈ Y .
The i-th neuron in the l-th layer of the MLP is associated
with the weights wlij , j = 1, . . . ,Ml−1, and the bias bli.
We summarize all the MLP parameters in the vector θ :=
(w211, . . . , wKMKMK−1

, b21, . . . , bKMK
)⊤ ∈ Θ ⊆ Rd and
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write fθ to make clear that the MLP is parameterized by θ.
For each hidden layer l ∈ {2, . . . ,K − 1}, the inputs are lin-
early transformed and then activated by a function a. More
specifically, we define the pre-activations of the i-th neuron
in the l-th hidden layer as oli =

∑Ml−1

j=1 wlijz(l−1)j + bli
with post-activations z(l−1)i = a(o(l−1)i) from the preceding
layer. For the input layer, we have z1i = xi, i = 1, . . . , n,
and for the output layer, zKi = ŷi, i = 1, . . . ,MK .
Predictive Uncertainty. In the Bayesian paradigm, a
prior density p(θ) is imposed on the parameters. Us-
ing Bayes’ rule, the parameter posterior density p(θ|D) =
p(D|θ)p(θ)/p(D) updates this prior belief based on the
information encoded in the likelihood p(D|θ), given a
dataset D = {(x(1),y(1)), . . . , (x(N),y(N))}. The PPD
p(y∗|x∗,D) quantifies the predictive or functional uncer-
tainty of the model for a new observation (x∗,y∗) ∈ X ×
Y . Since p(y∗|x∗,D) =

∫
Θ
p(y∗|x∗,θ)p(θ|D) dθ, deriv-

ing this uncertainty requires access to the posterior density
p(θ|D), which can be estimated from MCMC sampling.

2.1 Equioutput Transformations
Let us now characterize the notion of equioutput parameter
states, and the transformations to convert between them, more
formally. Two parameter states θ,θ′ are considered equiout-
put if the maps fθ, fθ′ yield the same outputs for all possible
inputs from X . We denote this equivalence relation by ∼:

θ ∼ θ′ ⇐⇒ fθ(x) = fθ′(x) ∀x ∈ X , θ,θ′ ∈ Θ.

The equioutput relation is always defined with respect to a
particular MLP f . All MLPs with more than one neuron in
at least one hidden layer exhibit such equioutput parameter
states that arise from permutation invariances of the input-
output mapping [Hecht-Nielsen, 1990; Kůrková and Kainen,
1994]. Since the operations in the pre-activation of the i-th
neuron in the l-th layer commute, the Ml > 1 neurons of a
hidden layer l can be freely interchanged by permuting their
associated parameters. In addition, equioutput transforma-
tions can arise from the use of certain activation functions
with inherent symmetry properties. For example, in the case
of tanh, the signs of corresponding parameters can be flipped
using tanh(x) = − tanh(−x). We consider transforma-
tion maps that are linear in θ and induce a finite amount of
equioutput transformation matrices, which includes, for ex-
ample, the tanh activation function. More specifically, let
FT : Θ → Θ,θ 7→ Tθ, T ∈ Rd×d, be an activation-
related transformation of a parameter vector that might, for
instance, encode an output-preserving sign flip. FT consti-
tutes an equioutput transformation if fθ(·) = fFT (θ)(·). We
collect all output-preserving transformation matrices T in the
set T , i.e.,

T =
{
T ∈ Rd×d | fθ(·) = fFT (θ)(·)

}
.

Similarly, let FP : Θ → Θ,θ 7→ Pθ, P ∈ {0, 1}d×d,
be a transformation that permutes elements in the parameter
vector. We define the set of permutation matrices that yield
equioutput parameter states as

P =
{
P ∈ Rd×d | fθ(·) = fFP (θ)(·)

}
.

The cardinality of P is at least
∏K−1

l=2 Ml! [Hecht-Nielsen,
1990] when traversing through the NN from the first
layer in a sequential manner, applying to each layer
permutations that compensate for permutations in its pre-
decessor. Since activation functions operate neuron-wise,
activation- and permutation-related equioutput transfor-
mations do not interact (for instance, we could permute
the associated weights of two neurons and later flip their
sign). We can, therefore, define arbitrary combinations
of activation and permutation transformations as E ={
E = TP ∈ Rd×d,T ∈ T ,P ∈ P | fθ(·) = fFE(θ)(·)

}
.

The transformation matrices in E will exhibit a block-
diagonal structure with blocks corresponding to network
layers. This is due to the permutations P affecting both
incoming and outgoing weights, but only in the sense
that two incoming and two outgoing weights swap places,
never changing layers. The activation-related sign flips or
rescalings occur neuron-wise, making T a diagonal matrix
that does not alter the block-diagonal structure of P .

For the cardinality of the set E of equioutput transforma-
tions, we can establish a lower bound that builds upon the
minimum cardinality of P: |E| ≥

∏K−1
l=2 Ml! · |Tl|, where

|Tl| denotes the number of activation-related transformations
applicable to neurons in layer l. From this, it becomes im-
mediately clear that the amount of functional redundancy in-
creases rapidly with the network size (see also Figure 1).

3 Efficient Sampling
3.1 Posterior Reference Set
As introduced in Section 2, for each parameter state θ of
an NN, there are functionally redundant counterparts θ′ re-
lated to θ by an equioutput transformation, such that fθ(·) =
fθ′(·). We can use this equivalence relation to dissect the pa-
rameter space Θ into disjoint equivalence classes. For this,
let the reference set S1 be a minimal set of representatives
of each equivalence class (cf. open minimal sufficient search
sets in [Chen et al., 1993]). All parameter states in S1 are
functionally diverse, i.e., θ, θ̃ ∈ S1 ⇒ θ ̸∼ θ̃, and each el-
ement in Θ is equivalent to exactly one element in S1. For a
finite amount of equioutput transformations, as in the case of
tanh-activated MLPs (finite possibilities of sign-flip combina-
tions of hidden neurons), the NN parameter space can then be
dissected into |E| disjoint representative sets, which contain
equioutput transformations of the elements of the reference
set, in the following way.
Proposition 1 (Parameter space dissection). Let S1 be the
reference set of uniquely identified network parameter states.
Then, for a finite number of equioutput transformations, it
holds that the parameter space can be dissected into |E| dis-
joint, non-empty representative sets up to a set S0 ⊂ Θ, i.e.,

Θ =

( ⋃̇|E|
j=1Sj

)
∪̇ S0, (1)

where Sj
∼= {θ | θ = Ejθ

′ ∀θ′ ∈ S1,Ej ∈ E} and ∪̇ de-
notes the union over disjoint sets. We use S0 as a residual
quantity to account for cases that cannot be assigned un-
ambiguously to one of the sets Sj because they remain un-
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Figure 1: Example of tanh-activated MLPs. Left: Cardinality lower bound of the equioutput transformation set for a single hidden layer with 1
to 128 neurons; the redundancy factor for 128 neurons is at 1.31 ·10254. Right: A ten-dimensional MLP parameter posterior (top-right corner,
depicted as bivariate marginal density) exhibits symmetries, such that all red sample clusters are equioutput-related to the green cluster. The
associated function spaces are identical, i.e., many posterior modes are redundant.

changed even under a transformation with non-identity ma-
trices Ej ∈ E .

The edge cases that make up S0 exist, for instance, on the
boundary of two classes [Chen et al., 1993] or in degenerated
cases [Sussmann, 1992; Vlačić and Bölcskei, 2021].

Equioutput parameter states have the same posterior prob-
abilities p(θ|D) = p(Eθ|D) if the prior is transformation-
invariant. Moreover, equioutput parameter states produce by
definition the same predictions p(y∗|x∗,θ) = p(y∗|x∗,Eθ)
for any E ∈ E . Thus, the following corollary holds.
Corollary 1 (Reformulated posterior predictive density). Let
E be finite. As in Proposition 1, consider the disjoint non-
empty sets Sj , j ∈ {1, . . . , |E|}, and residual space S0. If
the prior density p(θ) is transformation-invariant, then the
posterior predictive density expresses as

p(y∗|x∗,D) =

∫
Θ

p(y∗|x∗,θ)p(θ|D) dθ (2)

= |E|
∫
Sj

p(y∗|x∗,θ)p(θ|D) dθ +

∫
S0

p(y∗|x∗,θ)p(θ|D) dθ

≈ |E|
∫
Sj

p(y∗|x∗,θ)p(θ|D) dθ. (3)

Corollary 1 follows from Proposition 1 and the assump-
tion of transformation-invariant prior densities, which is often
satisfied in practice (e.g., for widely-applied isotropic Gaus-
sian priors). We can further approximate (2) by (3) as the set
S0 ⊂ Rd is of negligible size (depending on Θ, potentially
even with zero Lebesgue measure).

As a consequence of Corollary 1, the PPD can be obtained
up to the residual set by only integrating over uniquely iden-
tified parameter states from one of the sets Sj , with a mul-
tiplicative factor |E| that corrects the probability values by
the amount of redundancy in the posterior. In other words,
only a fraction 1/|E| of the posterior must be sampled in or-
der to infer a set of uniquely identified parameter states of the
NN, and thus, to obtain the full PPD. This reduces the tar-
get sampling space drastically, as illustrated in Figure 1. For
example, it allows the posterior space of a single-layer, tanh-
activated network with 128 neurons to be effectively reduced
to a 10254-th of its original size.
How to Obtain a Representative Set? When using Monte
Carlo to approximate Equation (3), it is not necessary to ac-

tually constrain the sampling procedure to a specific set Sj .
Since any equioutput transformation is known a priori, we
just need to be aware of the fact that each sample can theo-
retically be mapped to different representative sets after run-
ning the sampling procedure. Hence, for the calculation of
the PPD integral, the samples can remain scattered across the
various representative sets as long as they cover all function-
ally diverse parameter states.

3.2 An Upper Bound for Markov Chains
The question remains how many samples are needed to ap-
proximate a set of uniquely identified parameter states suf-
ficiently well. Even in a symmetry-free setting, BNN pos-
teriors can exhibit multiple functionally diverse modes rep-
resenting structurally different hypotheses, depending on the
network architecture and the underlying data-generating pro-
cess. In the following, we assume ν ∈ N functionally di-
verse modes with the goal of visiting every mode or its local
proximity at least once when running MCMC. As the abil-
ity to switch from one mode to another within a chain de-
pends on various factors, such as the acceptance probability
and the current state of other parameters, increasing the num-
ber of samples per chain does not necessarily correlate with
the number of visited modes. We, therefore, propose to focus
on the number of independent chains, rather than the num-
ber of samples per chain, to effectively control the number
of visited modes. This further allows us to derive an upper
bound for the number of independent chains that are required
to visit every mode at least once. The number of samples
from each chain will then ultimately determine the approxi-
mation quality. In practice, given a user-defined number of
maximal resources ρ (e.g., CPU cores), the following propo-
sition provides a lower bound on the probability that the num-
ber of chains G necessary to visit every mode remains below
the resource limit of the user (i.e., G < ρ).

Proposition 2 (Probabilistic bound for sufficient number of
Markov chains). Let π1, . . . , πν be the respective probabil-
ities of the ν functionally diverse modes to be visited by an
independently started Markov chain and ΠJ :=

∑
j∈J πj .

Then, given ρ chains and ι(ν, q) = (−1)ν−1−q ,

P(G < ρ) ≥ 1−ρ−1
{∑ν−1

q=0 ι(ν, q)
∑

J:|J|=q(1−ΠJ)
−1

}
.

(4)
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Figure 2: Convergence of MCMC depicted as the change in KL-divergence on original (black) and log-scale (blue) when consecutively
adding another sample from a new and independent chain and re-estimating the posterior density. Small overlaying plots: approximated PPD
of the network after 20, 24, 28, and G = 1274 samples; darker colors correspond to higher probabilities.

MCMC (ours) MCMC (s.c.) DE
DS -0.59 (± 0.12) -0.59 (± 0.12) -2.13 (± 0.03)
DI 0.91 (± 0.09) 0.91 (± 0.09) -2.02 (± 0.02)
DR 0.95 (± 0.08) 0.95 (± 0.08) -2.20 (± 0.02)
Airfoil 0.92 (± 0.05) 0.72 (± 0.10) -2.17 (± 0.01)
Concrete 0.26 (± 0.07) 0.25 (± 0.07) -2.03 (± 0.01)
Diabetes -1.18 (± 0.08) -1.22 (± 0.09) -2.09 (± 0.04)
Energy 2.07 (± 0.46) 2.38 (± 0.11) -1.99 (± 0.02)
ForestF -1.43 (± 0.45) -1.69 (± 0.49) -2.20 (± 0.02)
Yacht 3.31 (± 0.21) 0.15 (± 0.09) -2.18 (± 0.03)

Table 1: Mean log pointwise predictive density (LPPD) values on
test sets (larger is better; one standard error in parentheses). The
highest performance per dataset is highlighted in bold.

Note that this bound is independent of the NN architec-
ture and only depends on the assumptions about the number
and probabilities of functionally diverse modes ν, disregard-
ing symmetric copies. Proposition 2 can be used to calculate
the number of MCMC chains given certain assumptions—for
example, from domain knowledge, or in a worst-case sce-
nario calculation—and thus provides practical guidance for
MCMC sampling of MLPs. Judging by the comparably high
predictive performance of local approximations such as LA
and DE [MacKay, 1992; Lakshminarayanan et al., 2017], we
conclude that a small amount of functional modes is reason-
able to assume in practice. Our qualitative experiments in
Section 4 support this supposition.

4 Experiments
In all experiments, we employ a Bayesian regression model
with a normal likelihood function, standard normal prior for
parameters θ, and a truncated standard normal prior restricted
to the positive real line for the variance of the normal likeli-
hood, which we treat as a nuisance parameter. Depending on
the task, we either use a No-U-Turn sampler [Hoffman and
Gelman, 2014] with 210 warmup steps to collect a single sam-
ple from the posterior or derive the maximum-a-posteriori es-
timator using a gradient-based method.

Performance Comparison. In our first experiment, we
demonstrate the predictive performance of BNNs, where the
PPD is calculated based on MCMC sampling, using the de-
rived upper bound for the number of chains (ours). In this
case, we collect one sample per chain for G chains, and
thus G samples in total. This is compared to MCMC sam-

pling collecting G samples from a single chain (s.c.), and DE
with ten ensemble members on three synthetic datasets (DS ,
DI , and DR) as well as benchmark data from UCI [Dua and
Graff, 2017]. We use a NN with three hidden layers of 16
neurons each and tanh activations. Furthermore, we assume
three functionally diverse modes ν = 3 and mode proba-
bilities π1 = 0.57, π2 = 0.35, π3 = 0.08, which leads to
an upper bound of G = 1, 274 chains according to (4). To
demonstrate the performance of our MCMC-based PPD ap-
proximation, we measure the goodness-of-fit on the test data
using the log point-wise predictive density (LPPD) [Gelman
et al., 2014] with LPPD = log

∫
Θ
p(y∗|x∗,θ)p(θ|D) dθ ≈

log ( 1
G

∑G
g=1 p(y

∗|x∗,θ(g))), where θ(1), . . . , θ(G) are G
samples obtained across all chains via MCMC sampling from
the parameter posterior density p(θ|D). The approximation
is evaluated at each test point (x∗,y∗). Table 1 reports the
mean LPPD across N∗ independent test points for each com-
bination of dataset and sampling scheme. Our results clearly
indicate that using only a moderate amount of Markov chains
yields equal or even better performance than single-chain
MCMC and DE in all but one experiment.
Practical Evaluation of Corollary 1. We further investi-
gate the property derived in Corollary 1 using our proposed
upper bound of chains with the same assumptions about mode
probabilities as in the previous paragraph. To this end, we
analyze the PPD for dataset DI . For every newly collected
sample in the MCMC run, the updated PPD is computed ap-
proximately on a two-dimensional (input/output) grid. Then,
the Kullback-Leibler (KL) divergence between consecutive
densities is averaged over the grid of input values of the
NN. Despite the high amount of equioutput parameter states
|E| ≈ 2.58 ·1054, the PPD converges after notably fewer than
|E| samples (Fig. 2), and plots of the function space indicate
the saturation of functional diversity after 1,274 samples.

5 Conclusion
We showed that the PPD for Bayesian MLPs can be obtained
from just a fraction of the parameter space, due to the exis-
tence of equioutput parameter states, and proposed an upper
bound on the number of MCMC chains to guarantee the re-
covery of every functionally diverse mode. We refer the in-
terested reader to [Sommer et al., 2024] for follow-up work.
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