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Abstract
This paper is an extended abstract of our origi-
nal work published in KDD23, where we won the
best research paper award. The paper introduces
a novel approach to bridging the gap between pre-
trained graph models and the diverse tasks they’re
applied to, inspired by the success of prompt learn-
ing in NLP. Recognizing the challenge of aligning
pre-trained models with varied graph tasks (node
level, edge level, and graph level), which can lead
to negative transfer and poor performance, we pro-
pose a multi-task prompting method for graphs.
This method involves unifying graph and language
prompt formats, enabling NLP’s prompting strate-
gies to be adapted for graph tasks. By analyz-
ing the task space of graph applications, we refor-
mulate problems to fit graph-level tasks and apply
meta-learning to improve prompt initialization for
multiple tasks. Experiments show our method’s ef-
fectiveness in enhancing model performance across
different graph tasks. Beyond the original work, in
this extended abstract, we further discuss the graph
prompt from a bigger picture and provide some of
the latest work toward this area.

1 Introduction
Graph neural networks (GNNs) [Sun et al., 2021a] are in-
creasingly applied across various fields [Sun et al., 2023b;
Sun et al., 2022b; Li et al., 2024a; Sun et al., 2022c;
Chen et al., 2020; Sun et al., 2023a]. The focus has shifted to-
wards optimizing graph model training for specific problems.
Traditional graph learning methods depend heavily on labels,
often scarce or unfit for real-world complexities, leading to
overfitting, especially with out-of-distribution data [Shen et
al., 2021]. A popular mitigation strategy involves pre-training
on accessible data, then fine-tuning for specific tasks [Jin et
al., 2020], despite challenges in aligning pre-trained models
with diverse downstream tasks.

A novel approach, inspired by NLP, combines pre-training
with prompt learning and fine-tuning, where prompts facil-
itate task-specific model adjustments without extensive re-

∗The original paper was published in KDD23

training. This method shows promise for efficient model
adaptation, especially in scenarios with limited data. How-
ever, applying the concept of language prompts to GNNs in-
troduces challenges, such as defining prompt content and in-
tegration with graph structures, and ensuring prompts effec-
tively bridge pre-training tasks with varied downstream ap-
plications. Current efforts in graph prompt learning are lim-
ited and typically focus on single-task scenarios [Sun et al.,
2022a]. We extend NLP prompt methods to GNNs for multi-
task applications, addressing challenges in prompt design,
task reformulation, and prompt optimization. Our contribu-
tions include a unified prompt format for language and graph
domains, a strategy to reformulate tasks for better alignment
with pre-training, and the application of meta-learning to en-
hance prompt efficacy across multiple tasks. Our extensive
evaluations demonstrate the superiority of our approach.

2 Motivations
Graph pre-training [Sun et al., 2021b] employs strategies
to imbue GNNs with broad knowledge, reducing the need
for task-specific annotations. Techniques vary from node
and edge comparisons to graph-level contrastive learning,
which proves superior in learning graph knowledge by en-
hancing graph representation or adjusting model parame-
ters for consistency across perturbations [You et al., 2020;
Xia et al., 2022; Sun et al., 2023b]. Intuitively, the above
graph-level pre-training strategies have some intrinsic simi-
larities with the language-masked prediction task: aligning
two graph views generated by node/edge/feature mask or
other perturbations is very similar to predicting some vacant
“blanks” on graphs. To this end, we aim to merge graph pre-
training’s depth with prompt learning’s adaptability, address-
ing the multifaceted challenges in deploying GNNs across
various tasks more effectively.

3 Multi-task Prompting on Graphs
This section presents a condensed overview of our approach
to multi-task prompting for graph models, aiming to enhance
the transferability of pre-trained graph models across various
tasks without altering the original model architecture.
Objective: Our primary goal is to develop a graph prompt
that seamlessly integrates with original graphs, thereby align-
ing pre-trained graph models more closely with diverse
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downstream tasks and improving knowledge transfer across
domains.

Framework Overview: We introduce a multi-task prompt-
ing framework that first standardizes different graph tasks
into a uniform format, focusing on graph-level tasks. We then
design a novel graph prompt that incorporates learnable to-
kens, structures, and adaptive insertion patterns. To optimize
the prompt for various tasks, we employ a meta-learning strat-
egy, enabling the framework to adjust prompts dynamically
for improved performance across multiple tasks.

Reformulating Tasks for Generalization: Recognizing
the challenge of diverse task requirements in graphs, we re-
formulate node-level and edge-level tasks into graph-level
tasks. This approach, inspired by the hierarchical nature of
graph operations, allows for a broader application of pre-
training knowledge by treating operations like node or edge
modifications as graph-level changes.

Designing the Prompt Graph: We draw parallels between
NLP and graph prompting, aiming for a unified representation
that includes prompt tokens, token structures, and insertion
patterns. This ensures that our graph prompts are both mean-
ingful and adaptable to the structure of the original graph.

Let a graph instance be G = (V, E) where V =
{v1, v2, · · · , vN} is the node set containing N nodes; each
node has a feature vector denoted by xi ∈ R1×d for node
vi; E = {(vi, vj)|vi, vj ∈ V} is the edge set where each
edge connects a pair of nodes in V . With the previous dis-
cussion, we here present our prompt graph as Gp = (P,S)
where P = {p1, p2, · · · , p|P|} denotes the set of prompt to-
kens and |P| is the number of tokens. Each token pi ∈ P can
be represented by a token vector pi ∈ R1×d with the same
size of node features in the input graph; Note that in practice,
we usually have |P| ≪ N and |P| ≪ dh where dh is the size
of the hidden layer in the pre-trained graph model. With these
token vectors, the input graph can be reformulated by adding
the j-th token to graph node vi (e.g., x̂i = xi + pj). Then,
we replace the input features with the prompted features and
send them to the pre-trained model for further processing.

S = {(pi, pj)|pi, pj ∈ P} is the token structure denoted
by pair-wise relations among tokens. Unlike the NLP prompt,
the token structure in the prompt graph is usually implicit. To
solve this problem, we propose three methods to design the
prompt token structures: (1) the first way is to learn tunable
parameters:

A =
|P|−1
∪
i=1

j=i+1

{aij}

where aij is a tunable parameter indicating how possible the
token pi and the token pj should be connected; (2) the second
way is to use the dot product of each prompt token pair and
prune them according to the dot value. In this case, (pi, pj) ∈
S iff σ(pi ·pj) < δ where σ(·) is a sigmoid function and δ is
a pre-defined threshold; (3) the third way is to treat the tokens
as independent and then we have S = ∅.

Let ψ be the inserting function that indicates how to add the
prompt graph Gp to the input graph G, then the manipulated
graph can be denoted as Gm = ψ(G,Gp). We can define the
inserting pattern as the dot product between prompt tokens

Question 
Answering

Sentiment
Classification

Masked
Prediction

(a) NLP tasks

Subgraph-level 
Operations

Graph-level Operations

Node-level 
Operations

Edge-level 
Operations

(b) graph tasks

Figure 1: Task space in NLP and graph. Realizing the intrinsic na-
ture of task space in the graph area, we reformulate node-level and
edge-level tasks to graph-level tasks to achieve more general capa-
bilities for graph models.

and input graph nodes, and then use a tailored connection like
x̂i = xi +

∑|P|
k=1 wikpk where wik is a weighted value to

prune unnecessary connections:

wik =

{
σ(pk · xT

i ), if σ(pk · xT
i ) > δ

0, otherwise (1)

As an alternative and special case, we can also use a more
simplified way to get x̂i = xi +

∑|P|
k=1 pk.

Meta-Learning for Prompt Optimization: We leverage
meta-learning to refine our prompting approach, structuring
the learning process to accommodate multiple tasks simulta-
neously. This method updates prompt parameters based on
task-specific performances, ensuring that the final prompts
are well-suited to a wide array of graph tasks.

(a) Induced graphs for nodes

(b) Induced graphs for edges

Figure 2: Reformulate node-level and edge-level tasks to graph-level
tasks by induced graphs.

4 Why It Works?
Comparison to Prior Work: While GPPT [Sun et al.,
2022a] represents an early attempt at graph prompting, fo-
cusing on edge prediction for node classification, our method
extends this concept significantly. Unlike GPPT, our frame-
work is more versatile, accommodating a broader range of
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Training
schemes Methods Cora CiteSeer Reddit Amazon Pubmed

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

supervised
GAT 74.45 73.21 82.97 83.00 83.20 89.33 55.64 62.03 65.38 79.00 73.42 97.81 75.00 77.56 79.72
GCN 77.55 77.45 83.71 88.00 81.79 94.79 54.38 52.47 56.82 95.36 93.99 96.23 53.64 66.67 69.89
GT 74.25 75.21 82.04 86.33 85.62 90.13 61.50 61.38 65.56 85.50 86.01 93.01 51.50 67.34 71.91

pre-train
+

fine-tune

GraphCL+GAT 76.05 76.78 81.96 87.64 88.40 89.93 57.37 66.42 67.43 78.67 72.26 95.65 76.03 77.05 80.02
GraphCL+GCN 78.75 79.13 84.90 87.49 89.36 90.25 55.00 65.52 74.65 96.00 95.92 98.33 69.37 70.00 74.74
GraphCL+GT 73.80 74.12 82.77 88.50 88.92 91.25 63.50 66.06 68.04 94.39 93.62 96.97 75.00 78.45 75.05

SimGRACE+GAT 76.85 77.48 83.37 90.50 91.00 91.56 56.59 65.47 67.77 84.50 84.73 89.69 72.50 68.21 81.97
SimGRACE+GCN 77.20 76.39 83.13 83.50 84.21 93.22 58.00 55.81 56.93 95.00 94.50 98.03 77.50 75.71 87.53
SimGRACE+GT 77.40 78.11 82.95 87.50 87.05 91.85 66.00 69.95 70.03 79.00 73.42 97.58 70.50 73.30 74.22

prompt

GraphCL+GAT 76.50 77.26 82.99 88.00 90.52 91.82 57.84 67.02 75.33 80.01 75.62 97.96 77.50 78.26 83.02
GraphCL+GCN 79.20 79.62 85.29 88.50 91.59 91.43 56.00 68.57 78.82 96.50 96.37 98.70 72.50 72.64 79.57
GraphCL+GT 75.00 76.00 83.36 91.00 91.00 93.29 65.50 66.08 68.86 95.50 95.43 97.56 76.50 79.11 76.00

SimGRACE+GAT 76.95 78.51 83.55 93.00 93.14 92.44 57.63 66.64 69.43 95.50 95.43 97.56 73.00 74.04 81.89
SimGRACE+GCN 77.85 76.57 83.79 90.00 89.47 94.87 59.50 55.97 59.46 95.00 95.24 98.42 78.00 78.22 87.66
SimGRACE+GT 78.75 79.53 85.03 91.00 91.26 95.62 69.50 71.43 70.75 86.00 83.72 98.24 73.00 73.79 76.64

IMP (%) 1.47 1.94 1.10 3.81 5.25 2.05 3.97 5.04 6.98 4.49 5.84 2.24 8.81 4.55 4.62

Reported Acc of GPPT
(Label Ratio 50%) 77.16 – – 65.81 – – 92.13 – – 86.80 – – 72.23 – –

appr. Label Ratio of our setting ∼ 25% ∼ 18% ∼ 1.7% ∼ 7.3% ∼ 1.5%

Table 1: Node-level performance (%) with 100-shot setting. IMP (%): the average improvement of prompt over the rest.

graph tasks and pre-training strategies beyond edge predic-
tion, including advanced graph-level strategies like GraphCL
[You et al., 2020] and SimGRACE [Xia et al., 2022].
Flexibility: Our approach introduces the concept of a
prompt graph comprising multiple tokens with learnable
structures, offering a more nuanced and flexible method for
graph manipulation to better align with various pre-training
strategies. We demonstrate that this flexibility allows for
more effective adaptations of the graph structure to suit dif-
ferent tasks, reducing the error margin in representing manip-
ulated graphs.

The nature of prompting is to manipulate the input data to
match the pretext. Therefore, the flexibility of data opera-
tions is the bottleneck of prompting performance. Let g be
any graph-level transformation such as “changing node fea-
tures”, “adding or removing edges/subgraphs” etc., and φ∗

be the frozen pre-trained graph model. For any graph G with
adjacency matrix A and node feature matrix X, Fang et al.
[Fang et al., 2022] have proved that we can always learn an
appropriate prompt token p∗ making the following equation
stand:

φ∗ (A,X+ p∗) = φ∗(g(A,X)) +Opφ (2)

This means we can learn an appropriate token applied to the
original graph to imitate any graph manipulation. Here Opφ

denotes the error bound between the manipulated graph and
the prompting graph w.r.t. their representations from the pre-
trained graph model. This error bound is related to some non-
linear layers of the model (unchangeable) and the quality of
the learned prompt (changeable), which is promising to be
further narrowed down by a more advanced prompt scheme.
In this paper, we extend the standalone token to a prompt
graph that has multiple prompt tokens with learnable inner
structures. Unlike the indiscriminate inserting in Equation (2)
(“X + p∗” means the prompt token should be added to every
node of the original graph), the inserting pattern of our pro-
posed prompt graph is highly customized. Let ψ(G,Gp) de-

note the inserting pattern defined in section 3; G is the origi-
nal graph, and Gp is the prompt graph, then we can learn an
optimal prompt graph G∗

p to extend Equation (2) as follows:

φ∗ (ψ(G,G∗
p)
)
= φ∗(g(A,X)) +O∗

pφ (3)

By efficient tuning, the new error bound O∗
pφ can be fur-

ther reduced. That means our method supports more flexi-
ble transformations on graphs to match various pre-training
strategies.

5 Evaluation
We compare our methods with other approaches on five pub-
lic datasets including Cora [Welling and Kipf, 2016], Cite-
Seer [Welling and Kipf, 2016], Reddit [Hamilton et al.,
2017], Amazon [Shchur et al., 2018], and Pubmed [Welling
and Kipf, 2016]. We compare our method with super-
vised, pre-training plus fine-tuning, and other prompt meth-
ods across node, edge, and graph-level tasks. Key findings
include our method’s superior performance in multi-task set-
tings, showcasing notable improvements over existing meth-
ods.
Multi-Task Performance Our study evaluates the perfor-
mance of our prompt-based method across node-level, edge-
level, and graph-level tasks in few-shot learning settings,
comparing it against supervised methods and pre-training ap-
proaches. Results in Table 1 show that supervised meth-
ods struggle due to limited annotations available in few-
shot scenarios, while pre-training methods offer better per-
formance by leveraging prior knowledge. However, select-
ing and fine-tuning a pre-trained model for a specific task is
effort-intensive and not always transferable to other tasks.

Our method, by incorporating prompts, shows compati-
bility improvements across all task levels, achieving perfor-
mance boosts ranging from 1.10% to 8.81% for node-level
tasks, 1.28% to 12.26% for edge-level tasks, and 0.14% to
10.77% for graph-level tasks. Notably, our approach under a
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more challenging setting (with only 100 labeled samples per
class) still outperforms the GPPT model, which uses a 30% to
50% label ratio, indicating superior efficiency and adaptabil-
ity of our method in few-shot learning contexts across various
graph tasks. Please see the original paper for more task per-
formance like edge-level and graph-level tasks.

Source task Methods Accuracy F1-score AUC score

graph level
hard 51.50 65.96 40.34
fine-tune 62.50 70.59 53.91
prompt 70.50 71.22 74.02

node level
hard 40.50 11.85 29.48
fine-tune 46.00 54.24 37.26
prompt 59.50 68.73 55.90

Table 2: Transferability (%) on Amazon from different level tasks
spaces. Source tasks: graph-level tasks and node-level tasks. Target
task: edge-level tasks.

Transferability: Our method demonstrates enhanced
adaptability, outperforming both hard transfer and fine-
tuning approaches in transferring models to new tasks (as
shown in Table 2) and domains (as shown in Table 3). This is
particularly evident in tasks requiring significant adaptation,
where our prompting framework facilitates more effective
knowledge transfer.
Graph Transformation Flexibility: Our approach effec-
tively minimizes the error in representing manipulated
graphs, demonstrating its capacity to support a wide range
of graph transformations. This is further illustrated by visu-
alizations that highlight the improved graph representations
achieved through our prompting method.

For more experiments, please see in our original paper.

Source
Domains Amazon PubMed

Tasks hard fine-tune prompt hard fine-tune prompt

node
level

Acc 26.9 64.14 65.07 55.62 57.93 62.07
F1 13.11 77.59 80.23 66.33 70.00 76.60

AUC 17.56 88.79 92.59 82.34 83.34 88.46

edge
level

Acc 17.00 77.00 82.00 10.00 90.50 96.50
F1 10.51 81.58 84.62 2.17 89.73 91.80

AUC 4.26 94.27 96.19 6.15 93.89 94.70

graph
level

Acc 46.00 87.50 88.00 50.00 91.00 95.50
F1 62.76 89.11 88.12 10.00 93.90 95.60

AUC 54.23 86.33 94.99 90.85 91.47 98.47

Table 3: Transferability (%) from different domains. Source do-
mains: Amazon and PubMed. Target domain: Cora

6 A Bigger Picture of Graph Prompts
In the rapidly evolving field of Artificial General Intelligence
(AGI) [Li et al., 2024b], significant advancements have been
made, especially with applications like ChatGPT in NLP and
Midjourney in Computer Vision (CV), greatly enhancing our
efficiency and creativity. Yet, the application of AGI in graph
data analysis remains nascent, despite its potential to revo-
lutionize areas such as drug design and battery development

Prompt Solutions Token
Number

Drop
Nodes

Drop
Edges

Mask
Features RED (%)

Original Error
(without prompt) 0 0.9917 2.6330 6.8209 -

Naive Prompt
(Equation 2) 1 0.8710 0.5241 2.0835 66.70↓

Our Prompt Graph
(with token, structure,
and inserting patterns)

3 0.0875 0.2337 0.6542 90.66↓
5 0.0685 0.1513 0.4372 93.71↓
10 0.0859 0.1144 0.2600 95.59↓

Table 4: Error bound discussed by section 4 RED (%): average re-
duction of each method to the original error.

due to challenges in harmonizing information across modali-
ties, domains, and tasks.

In section 4, we can find that graph prompt has the po-
tential to simulate various data manipulations. This means
it can be used to achieve the tough challenge in graph do-
main transfer. Our paper also demonstrates its huge potential
for task transfer. In addition, since we only need to tune a
light-weight prompt while keeping a large graph model un-
changed, it is more efficient. Prompt learning emerges as a
promising solution. It has shown remarkable success in NLP
and CV by reformulating tasks to leverage pre-trained mod-
els without extensive tuning. Prompt learning’s efficiency in
knowledge extraction and task reformulation presents an op-
portunity to address the complexities of working with graph
data, suggesting a path to extend its benefits to graph-based
AGI applications.

To achieve this end, some recent works have been pro-
posed to follow up our paper [Sun et al., 2023c]. We re-
cently further studied the feasibility of domain transferring
with graph prompt [Zhao et al., 2024], explored the applica-
tion of graph prompt in protein multimer structure prediction
[Gao et al., 2024], and proposed various variants of graph
prompt [Chen et al., 2024]. We also release “ProG” (Prompt
Graph), which is a Python library built upon PyTorch to eas-
ily conduct single or multi-task prompting for pre-trained
Graph Neural Networks (GNNs). Please use the library at
https://github.com/sheldonresearch/ProG/

In future work, we can further study the integration of
graph prompts with various graph models [Zhang et al.,
2022b], extend its applications[Liu et al., 2022; Piao et al.,
2023; Cui et al., 2023; Meng et al., 2023], and the security
issue of graph prompt[Zhang et al., 2022a; Yang et al., 2023].
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