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Abstract
We develop an approach for collective decision
making from first principles. In this approach,
rather than using a—necessarily imperfect—voting
rule to map any given scenario where individual
agents report their preferences into a collective de-
cision, we identify for every concrete such sce-
nario the most appealing set of normative princi-
ples (known as axioms in social choice theory) that
would entail a unique decision and then implement
that decision. We analyse some of the fundamen-
tal properties of this new approach, from both an
algorithmic and a normative point of view.

1 Introduction
There is a well-known mismatch between, on the one hand,
seminal results in social choice theory—the principled study
of decision making in groups—saying that it is essentially
impossible to design an adequate rule for mapping the pref-
erences of individuals into a collective decision [Arrow et al.,
2002; Brandt et al., 2016] and, on the other hand, our ev-
eryday experience of “making things work”, often by using
pragmatic methods—such as the infamous plurality rule—we
know to be flawed. In fact, this pragmatic approach is not en-
tirely without scientific justification. Results in behavioural
social choice have shown that the problematic scenarios ul-
timately responsible for the mathematically enticing but oth-
erwise discouraging findings of social choice theory are very
rare in practice [Regenwetter et al., 2006]. But too often the
misguided take-away from this observed mismatch is to throw
the baby out with the bathwater and to ignore the deep in-
sights about sound and normatively grounded decision mak-
ing provided by social choice theory altogether.

Instead, in recent work [Schmidtlein and Endriss, 2023]
we have put forward an approach to collective decision mak-
ing that is grounded in the axiomatic method of social choice
theory [Plott, 1976; Thomson, 2001] but that accounts for the
fact that it is impossible to design a “perfect” voting rule that
will produce a suitable decision for every conceivable profile

∗This is an extended abstract of a paper first published in the
proceedings of the 22nd International Conference on Autonomous
Agents and Multiagent Systems [Schmidtlein and Endriss, 2023].

of preferences reported by the members of a group. While
in classical social choice theory axioms, i.e., formal render-
ings of normative principles, are used to motivate acceptable
voting rules (that can then be applied in any concrete situa-
tion we might encounter), in our approach we take decisions
from first principles—by appealing directly to axioms when
proposing a decision in a given situation:
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Decisions
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specific scenarios
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classical
approach

voting
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We call this approach “voting by axioms”. It is based on the
fundamental idea that a set A of axioms can be said to force
a given outcome O for a given profile R of preferences if
every voting rule F that satisfies all the axioms in A would
produce O when applied to R. When that is the case and
when we find A normatively appealing, then A provides a
perfect justification for choosing O. Of course, often this will
not actually be the case. Indeed, the set A might not force
any outcome for R at all. So instead we work with an en-
tire collection of axioms, ranked from most to least desirable.
Then, if our favourite set of axioms does not force an outcome
for the profile at hand, we can see whether the next best set
might do so, and so forth. So we end up taking a decision that
is suggested by the best possible set of normative principles
available to us that actually speaks to the situation at hand.

While our approach, in principle, is relevant to any kind
of decision making scenario, in practice it is most suited to
high-stakes situations where a fairly small group of agents
need to choose between a fairly small number of alternatives
and where we require any decision taken to stand on sound
normative grounds. Agents here could be human beings who
are assisted by decision support technology implementing our
approach, or they could be autonomous software agents act-
ing on behalf of human stake-holders.

In methodological terms, our approach owes much to the
development of the axiomatic method in social choice the-
ory [Plott, 1976; Thomson, 2001], starting with the semi-
nal work of Arrow [1951]. More specifically, our approach
is inspired by work of Boixel and Endriss [2020] on ex-
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plainable decision making and has links to recent work in
this area by several authors [Cailloux and Endriss, 2016;
Belahcene et al., 2019; Procaccia, 2019; Peters et al., 2020;
Boixel and de Haan, 2021; Boixel et al., 2022; Nardi et al.,
2022; Suryanarayana et al., 2022]. While contributions in
that literature tend to focus on the task of generating human-
readable explanations for why a given decision is forced, our
concern here is more basic and we ask whether that decision
is forced in the first place. Finally, there are connections to
recent work on using SAT solvers to support the generation
of proofs for impossibility theorems in social choice theory
[Geist and Peters, 2017], an approach pioneered by Tang and
Lin [2009], because one can use the same kind of encoding
of axioms into propositional logic to develop practical imple-
mentations of our approach on top of a SAT solver.

2 The Approach
In this section we outline the approach of voting by axioms.

2.1 Social Choice Fundamentals
While the idea of voting by axioms can, in principle, be ap-
plied to any model of social choice [Arrow et al., 2002], here
we consider scenarios with a finite universe N∗ = {1, . . . , n}
of potential agents and a finite set X = {1, . . . ,m} of al-
ternatives, where at any given time the members of a some
electorate N ⊆ N∗ each express their preferences by provid-
ing a full ranking of the elements of X , thereby giving rise to
a profile of preferences, and we need to choose a nonempty
outcome O ⊆ X of intuitively “best” alternatives.

A voting rule F is a function mapping any such profile to
an outcome. Well-known examples include the plurality rule,
the Borda rule, and the Copeland rule [Zwicker, 2016].

A central concept in social choice theory are so-called ax-
ioms. These are normative principles describing properties
we would expect to be satisfied by any good procedure tak-
ing decisions, such as a voting rule. Well-known examples
include ANONYMITY, requiring that all agents are treated
the same; PARETO, stipulating that dominated alternatives
(i.e., alternatives y for which there is another alternative x
that everyone expressing a preference prefers) are not cho-
sen; CONDORCET, saying that whenever an alternative wins
all pairwise majority contests only that alternative should be
chosen; and REINFORCEMENT, demanding that, whenever
the outcomes for two profiles with disjoint electorates have a
nonempty intersection, that intersection will be the outcome
when the union of both electorates report preferences.

The formal meaning of an axiom A can be fixed by refer-
ring to the set of all voting rules that satisfy it, its so-called
interpretation I(A) [Boixel and Endriss, 2020]. Similarly, the
interpretation I(A) of a set A of axioms is the set of voting
rules that satisfy all of the axioms inA. Such a set is nontriv-
ial if it is satisfied by at least one rule, i.e., if I(A) 6= ∅.

2.2 Simple Forcing
Suppose we are presented with a profile R and a set A of ax-
ioms on which to base our decision which outcome to choose
for R. Sometimes the axioms in A might allow us to exclude
certain alternatives from the outcome (e.g., when PARETO is

applicable), and sometimes A might even fully determine—
or force—a specific outcome O. Let us make this precise.

Definition 1. We say that a nontrivial axiom set A forces an
outcome O on a given profile R if every voting rule satisfying
the axioms in A would return that outcome:

F (R) = O for all F ∈ I(A).

The case of trivial axiom sets is explicitly excluded from this
definition, because a trivial axiom set would vacuously force
every conceivable outcome O on every conceivable profile R.

The notion of forcing thus defined satisfies a number of
simple structural properties that together demonstrate that it
behaves as expected [Schmidtlein and Endriss, 2023]:

• Adding an axiom to a set results in more profiles with a
forced outcome: ifA ⊆ A′ (and both are nontrivial) and
if A forces outcome O on profile R, then so does A′.
• If an axiom set A forces an outcome on every profile,

then A characterises some voting rule F : I(A) = {F}.

2.3 Ranked Forcing
We now generalise the fundamental idea of forcing by work-
ing with a ranking of several axiom sets rather than a single
such set. A ranked axiom corpus is a pair 〈A,�〉 consisting
of a collection A of axiom sets and a strict linear order � de-
clared on this collection A. We say that 〈A,�〉 is nontrivial
if every axiom set A in A is nontrivial.

Definition 2. We say that a nontrivial ranked axiom corpus
〈A,�〉 forces an outcome O on a given profile R if at least
oneA ∈ A forces some outcome on R and if O is the outcome
forced by the top-ranked such axiom set in A ∈ A.

Thus, for any given profile R, we now look for the highest-
ranked axiom set that actually forces an outcome on R.

By the aforementioned result regarding the axiomatic char-
acterisations of voting rules, a corpus A including an axiom
setA that characterises a unique voting rule is a sufficient (but
not a necessary) condition for 〈A,�〉 forcing an outcome on
every profile. So by placing a set A that characterises some
rule (which might not be ideal but offers a decent level of
quality) at the bottom of the ranked axiom corpus, we can
ensure that in every situation some outcome will be forced.

Example 1. Let 〈A,�〉 be a corpus of the form
{CONDORCET} � A, where A is some axiom set charac-
terising the well-known Borda rule [Zwicker, 2016; Young,
1974]. It is easy to see that {CONDORCET} forces an out-
come on all profiles that have a Condorcet winner, i.e., an
alternative that beats all others in pairwise majority contests,
and that it does not force an outcome on any other profile.
Since {CONDORCET} is the top-ranked set in the corpus,
on Condorcet profiles the corpus 〈A,�〉 forces the singleton
containing the Condorcet winner. On all other profiles 〈A,�〉
forces the same outcome as would be returned by the Borda
rule. Overall, we end up with the same form of decision mak-
ing as has been proposed by Duncan Black back in 1958, who
argued that we should choose the Condorcet winner when it
exists and otherwise use the Borda rule [Black, 1958]. M
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It also is worth pointing out that, by placing an axiom set A
that characterises a unique rule F at the very top of the ranked
axiom corpus, voting by axioms reduces to simply apply-
ing F to produce outcomes. In this sense our approach can
be seen as generalising the classical approach of social choice
theory, where we first use axioms to motivate voting rules and
then apply those voting rules to concrete profiles.

We have not yet commented on the question where 〈A,�〉
might come from. We might start out with a large set of can-
didate axioms and then use some or all of the (nontrivial) sub-
sets of that set to populate A. But supplying, from scratch, a
complete and strict ranking over the sets in A might be infea-
sible in practice. Instead, we might provide a ranking . on
single axioms and then lift it to a ranking � on the sets in A.
There are myriad ways of how to lift an order on objects to
an order on sets of objects [Barberà et al., 2004], but one nat-
ural option would be to prefer small sets over large sets and
to rank sets of the same cardinality lexicographically.

Another way of generating a ranking � on a collection A
of axiom sets would be to associate each axiom A with a
cost c(A). The cost of an axiom set then would be sum of
the costs of its members and we could rank the axiom sets in
A from cheapest to most expensive. In this context, the cost
c(A) of an axiom A might reflect the effort of persuading
someone to accept the normative principle underlying A.

3 Technical Results
In the full paper we establish a number of technical results
regarding the new approach of voting by axioms, regarding
both its algorithmic and its axiomatic features [Schmidtlein
and Endriss, 2023]. In this section we sketch what these re-
sults entail but refer to the full paper for details and proofs.

3.1 Computational Intractability of Forcing
Voting by axioms clearly is a computationally demanding
procedure. Given a ranked corpus 〈A,�〉 of axiom sets and a
profile R, we need to find the first axiom set in A that forces
an outcome on R. The operation at the core of the approach
is that of checking whether one specific axiom set A forces
an outcome for a given profile R. A formal analysis of the
computational complexity of this core problem thus can offer
insights into inherent limitations of voting by axioms.

How difficult it is to determine whether A forces an out-
come on R will depend on the axioms involved; for some it
might be straightforward and for others very difficult. To be
able to offer a precise analysis of the computational difficulty
of the problem, we need to be able to talk about the size of
the input of the problem, i.e., the combined size of a given
axiom set. To this end, we encode axioms using a simple
logical language. We use propositional variables of the form
pR,x, where R is the name of a profile and x is the name of
an alternative, to express that for profile R alternative x be-
longs to the outcome. The models of formulas in this logic
are given by voting rules. For instance, rule F satisfies the
formula pR,x ∧ ¬pR,y if x ∈ F (R) but y 6∈ F (R).

Similar encodings have been used in the literature on com-
putational social choice for a number of different purposes
[e.g., Tang and Lin 2009; Cailloux and Endriss 2016].

We can fully describe a voting rule by taking a conjunc-
tion over all profiles and alternatives and including either the
positive or negative literal, depending on whether or not the
alternative is contained in the voting rule’s outcome for the
profile in question. Thus, every conceivable axiom A can be
expressed in our language by taking the disjunction over all
the conjunctions corresponding to voting rules in I(A).
Example 2. The axiom PARETO can be encoded as follows:∧

y∈X

∧
x∈X\{y}

∧
R:∀i.(x,y)∈Ri

¬pR,y.

Here, the third conjunction operator is intended to range over
all profiles R for which it is the case that every agent i who
expresses a preference in R ranks x above y. M

Now we can define the size of an axiom A as the length of its
logical encoding, and the combined size of an axiom set A as
the sum of the sizes of its members. With this definition in
hand, we are now ready to state our complexity result.
Theorem 1. The problem of deciding whether a given non-
trivial axiom set A forces an outcome for a given profile R is
coNP-complete in the combined size of A.
So the problem is indeed computationally intractable. This
might be unsurprising. In fact, the most interesting aspect of
Theorem 1 is that the problem is only coNP-complete. For
comparison, Boixel and de Haan [2021] have shown that a
closely related problem, arising in the context of computing
explanations for why a given set of axioms forces a given out-
come, is hard for Σp

2, a complexity class that, under the usual
complexity-theoretic assumptions, is located above coNP.

3.2 Practical Operationalisation via SAT Solving
The fact that the problem of deciding whether a given ax-
iom set forces an outcome for a given profile is only coNP-
complete suggests that it should be possible to tackle it with
a SAT solver [Biere et al., 2009], i.e., a tool for answering
questions about the satisfiability of a given set of formulas of
propositional logic. This opens up opportunities for practi-
cally feasible implementations of voting by axioms.

There, by now, is much precedent in the literature on com-
putational social choice for the use of SAT solvers to reason
about scenarios of collective decision making. Most such
contributions have been concerned with offering computa-
tional support for proving impossibility theorems [Geist and
Peters, 2017], but Nardi et al. [2022] also have used SAT
solvers to design a practically viable algorithm for comput-
ing axiomatic justifications for election outcomes.

So let us briefly sketch how to reduce the problem of de-
ciding whether a given axiom setA forces a given outcome O
on a given profile R to a query to a SAT solver. Recall thatA
forcing O on R means that every voting rule F that satisfiesA
returns O when applied to R. In other words, proposing any
outcome other than O for R would be inconsistent with the
axioms in A for any well-formed voting rule F . So we can
think of the task of proving that O is the right outcome as the
task of proving thatA together with the assumptions that F is
well-formed (in the sense of always returning a nonempty set
of alternatives) and that O is not the outcome is logically in-
consistent. Using our logical language, we can easily express
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all of these requirements as formulas of propositional logic.
We can then pass the conjunction of these formulas to a SAT
solver and answer the original question of whether A forces
O on R in the affirmative in case the SAT solver should find
that conjunction to be unsatisfiable.

3.3 Well-Behavedness of Intraprofile Axioms
Some axioms are particularly “well-behaved” in the context
of voting by axioms. Specifically, this is the case for what
Fishburn [1973] calls intraprofile axioms. Intraprofile axioms
have a particularly simple structure in that they only speak
about conditions on outcomes “one profile at a time”. In our
logical encoding, they can be formulated as conjunctions of
conditions that each relate to just one single profile.
Example 3. PARETO is an intraprofile axiom since, when-
ever the axiom requires alternative y to not be part of the out-
come for a profile R due to y being dominated by x, this
condition can be verified by considering R in isolation. On
the other hand, ANONYMITY is not an intraprofile axiom, be-
cause each instance speaks about two different profiles. M

As long as the axiom corpus we are working with is suffi-
ciently rich, so as to guarantee that some outcome will be
forced on any given profile, we can think of the procedure
of voting by axioms as a voting rule in its own. Indeed, it
amounts to a function mapping profiles to outcomes. In gen-
eral, the axioms occurring within the corpus need not be ax-
ioms that are satisfied by that voting rule. But for intraprofile
axioms we obtain a natural correspondence between axioms
occurring in the corpus and axioms satisfying the rule.
Theorem 2. For any nontrivial ranked axiom corpus 〈A,�〉
and any intraprofile axiom A, we can find a voting rule F ∈
I(A) that agrees with the outcomes forced by 〈A,�〉 on every
profile R for which A belongs to the top-ranked axiom set
in A that forces an outcome on R.
Thus, for any intraprofile axiom A, the procedure of voting by
axioms across all profiles where A belongs to the top-ranked
axiom set forcing an outcome coincides with the behaviour
of a voting rule that satisfies that axiom A. The same is not
true for arbitrary axioms. Indeed, if an axiom requires the
outcome of one profile to be dependent on the outcome of an-
other profile, this dependency might not be preserved when
two distinct axiom sets in our corpus end up forcing outcomes
on these profiles. In such a situation, the two forced decisions
together might not be consistent with the axiom. Theorem 2
holds because this problem does not occur for intraprofile ax-
ioms, as they do not allow for such dependencies.

3.4 Characterisation of Induced Rules
Once again, if the ranked axiom corpus 〈A,�〉 is sufficiently
rich to force an outcome on every possible profile, we can
think of the operation of ranked forcing as defining a voting
rule F . We refer to F as the voting rule induced by 〈A,�〉.

We already pointed out in Section 2.3 that, if a voting
rule F is characterised by an axiom set A and we place A at
the top of a ranked axiom corpus, then running the procedure
of voting by axioms is equivalent to applying F . We conclude
by presenting a result that further refines this simple insight
by establishing that, if characterising axioms are placed high

enough in the ranking of a corpus, then the induced voting
rule will be the characterised rule itself. In particular, the in-
duced voting rule will satisfy the characterising axioms.

Theorem 3. For every axiom set A that uniquely charac-
terises a voting rule F , and for every nontrivial ranked ax-
iom corpus 〈A,�〉 for which A is a subset of the top-ranked
axiom set in A for every profile R, it is the case that the char-
acterised rule F coincides with the rule induced by 〈A,�〉.

4 Conclusion
We introduced a novel approach to collective decision mak-
ing from first principles. Instead of using a—necessarily
imperfect—voting rule, we proposed to use axioms to deter-
mine and justify outcomes in voting scenarios. By using a
collection of multiple axiom sets, this approach allows us to
involve many (even mutually inconsistent) axioms in the de-
cision process. At the same time it must be noted that this
method is only ever as good as the axioms it uses. The deci-
sions taken will be appropriate only if the axioms are.

We suggested one way of implementing the framework to
compute outcomes based on forcing, namely by encoding ax-
ioms in a propositional logic and using a SAT solver to de-
termine forced outcomes. Nonetheless, the complexity result
we obtained indicate that realising voting by axioms will be
a challenging task in practice. We further explained how our
approach can be seen as an extension of the classical approach
of social choice theory by showing that the procedure of vot-
ing by axioms can sometimes be represented by a voting rule.
We highlighted two cases in which our procedure enjoys par-
ticularly attractive properties.

Future work should be dedicated to making it easier to use
the procedure of voting by axioms in practice. One aspect
of this would be to develop a formal language for encoding
axioms that is more compact and that lends itself more easily
to presenting axioms to users in human-readable form. Some
steps in this direction have been taken by Boixel and de Haan
[2021], and more broadly in the literature on modelling social
choice scenarios in mathematical logic [Endriss, 2011]. An-
other aspect would be to develop heuristics leading to faster
algorithms to determine forcing, for instance, along the lines
of recent work by Nardi et al. [2022]. Related to this point,
it also would be interesting to study special classes of ax-
ioms, such as the algebraic axioms of Kaminski [2004], for
which forcing is easier to determine. Finally, more research
is needed on how to support users to construct a corpus of ax-
ioms and, specifically, a ranking of sets of axioms drawn from
that corpus. The two approaches we sketched, one favouring
smaller axiom sets and one assigning costs to axioms, repre-
sent just two of many possible directions to explore.
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