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Abstract
In this paper, we argue that computational mod-
els of learning can contribute precise theory to ex-
plain surprising student learning phenomena. In
some past studies, practice produces better learn-
ing than studying examples, whereas other stud-
ies show the opposite result. We explain this con-
tradiction by suggesting that retrieval practice and
example study involve different learning cognitive
processes, memorization and induction, and each
process is optimal for different types of knowl-
edge. We implement and test this theoretical ex-
planation by extending an AI model of human cog-
nition to include both memory and induction pro-
cesses and comparing the behavior of the simulated
learners to those of human participants. We show
that the behavior of simulated learners with for-
getting matches that of human participants better
than simulated learners without forgetting. Simu-
lated learners with forgetting learn best using re-
trieval practice in situations that emphasize memo-
rization (such as learning facts), whereas studying
examples improves learning when multiple pieces
of information are available, so induction and gen-
eralization are necessary (such as learning skills).

1 Introduction
Retrieval practice — repeatedly trying to retrieve informa-
tion by completing practice questions — has been shown
to improve performance compared to re-studying [Roedi-
ger III et al., 2011; Roediger III and Karpicke, 2006]. In-
terestingly, re-study trials in the form of worked examples
have also been shown to improve performance compared to
answering more practice questions [Van Gog et al., 2006;
Renkl, 2005]. This apparent contradiction poses both theo-
retical and practical issues. Theoretically, to which degree
do we have a complete understanding of the learning process
if opposite approaches can yield similar results? Practically,
when making suggestions for the application of cognitive sci-
ence findings to educational contexts, practitioners are left
wondering which approach to use and when.

∗The work was initially published at International Conference on
Artificial Intelligence in Education (2023)

The Knowledge Learning Instruction framework (KLI) of-
fers a potential explanation [Koedinger et al., 2012]. A key
premise of KLI is that optimal instructional design decisions
depend on what learning process the student must engage in,
which depends on the nature of the target knowledge compo-
nent (KC). A KC is a stable unit of cognitive function that is
acquired and modifiable. KLI identifies three types of Learn-
ing Events: Memory processes, induction processes, and
sense-making processes, associated with the types of KCs.
KLI also offers a taxonomy for KCs based on how they func-
tion across Learning Events. In this way, KCs can be classi-
fied based on their application and response conditions. Facts
such as “the capital of France is Paris” are constant applica-
tion and constant response KCs because there is only one sin-
gle application of the KC and only one response. Conversely,
skills such as equation solving are variable application and
variable response KCs because multiple problems can elicit
the same KC and there are multiple ways to apply this KC
across different problems (e.g., solving an equation that one
never saw, using a generalization from past examples).

Moreover, the KLI framework further suggests causal links
between instructional principles (e.g., “retrieval practice”,
“worked-example study”), and changes in learner knowledge.
For simple constant KCs such as facts, memory processes are
more relevant. Conversely, for variable KCs such as skills, in-
duction processes are more relevant. Thus, different types of
KCs will interact with different types of Instructional Prin-
ciples to create different learning. In the context of facts
(“What is the capital of France?”), learners need to success-
fully encode all of the information presented and be able to
retrieve it later. Learning facts only requires learning the spe-
cific pieces of single practice items but does not require any
synthesis across practice items. Conversely, in the context of
skills (“Calculate the area of a rectangle with the following
measurements”), learners need to generalize their knowledge
across a series of studied instances. In this sense, learning
skills requires identifying which pieces of information are rel-
evant for encoding and which are not.

Carvalho et al. [Carvalho et al., 2022] proposed that re-
trieval practice improves memory processes and strengthens
associations, whereas studying examples improves inference
processes and information selection for encoding. This pro-
posal is also consistent with previous work [Karpicke and
Blunt, 2011; Salden et al., 2010]. To test this hypothesis,
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Carvalho et al. [Carvalho et al., 2022] conducted an experi-
ment using a basic mathematical domain (calculating the area
of geometrical shapes). Human participants (N=95) were di-
vided into 4 conditions: practice-only training of facts, study-
practice training of facts, practice-only training of skills, and
study-practice of skills. A significant interaction was found
between the type of concept studied and the type of training.

In this study, we use an AI model of human learning to
demonstrate the likelihood of these mechanisms generating
behavioral results similar to Carvalho et al.’s experiment and
examine the extent to which the memory mechanism influ-
ences human learning. Furthermore, this study provides fur-
ther evidence for the utility of computational models of hu-
man learning in the advancement of learning theory. As pro-
posed by MacLellan et al.[Maclellan et al., 2016], the use of
such models enables a bridge between learning theory and
educational data, allowing for the testing and refinement of
fundamental theories of human learning. This study extends
this concept by demonstrating the ability of these models to
contribute to evaluating theories that can explain even surpris-
ing student learning phenomena, for which existing learning
theories may offer inconsistent explanations.

2 A Computational Model of Human
Learning

Simulated learners (SL) are AI systems that learn to perform
tasks through an interactive process, such as human demon-
strations and feedback, usually with mechanisms intended to
model how humans learn. In this work, we used the Appren-
tice Learner framework (AL), a framework for creating SLs
based on different mechanistic theories of learning. Details
on AL and its operation can be found elsewhere [Maclellan
et al., 2016; Weitekamp et al., 2021]; briefly, AL agents learn
a set of production rules through an induction mechanism.
The agents receive a set of states as input and search for the
existing production rules that are applicable. If none are ap-
plicable, AL agents will request a demonstration of correct
action and go through the induction process to construct a
new rule for the current set of states. Later, when the agents
encounter states that use the same production rule, the rule
will get generalized or fine-tuned according to the examples
they encounter. The learning process in AL is largely deter-
ministic but some of the learning mechanisms have stochastic
elements. For example, when multiple possible actions are
possible, a stochastic probability matching process is used to
select which one to execute.

The AL framework’s production rules consist of two sets
of conditions - the left-hand side (LHS) and right-hand side
(RHS) - that include three essential components: where-part,
when-part, and how-part. RHS is the action that AL thinks
it should take in the form of a Selection-ActionType-Input
(SAI) triple. The value of the SAI is calculated by a function
composition called how-part, given the values extracted from
the input states by the where-part. The where-part determines
which state elements the production rule could be applied to.
These sets of elements are called bindings and contain the el-
ements to be used as arguments to the RHS of the skill and
the selection (the element to be acted upon). The when-part

of a skill, a binary function (often in the form of a set of con-
ditions), determines whether or not a particular skill should
be activated given the current state of the system. Initially,
the when-part and where-part may be either over-specific or
over-general but will be refined to the appropriate level as the
agent receives additional demonstrations or feedback on the
skill. For instance, if the agent is given an example of cal-
culating the area of a rectangle (e.g. given l = 4, h = 3, then
the area is 12) and another for a triangle (e.g. given l = 5, h
= 4, then the area is 10), it will learn two distinct skills (i.e.
rectangle-area and triangle-area skills). However, since each
skill is demonstrated only once, the conditions in the LHS re-
main unrefined. Consequently, when the agent is presented
with another rectangle-area problem, it may mistakenly ac-
tivate the triangle-area skill due to over-general conditions.
Upon receiving negative feedback, AL will refine the when-
part of the triangle-area skill to be more specific, such as only
activating it when the shape is a triangle.

In previous work, AL agents have been shown to demon-
strate human-like behaviors in learning academic tasks, such
as fractions arithmetic, and multi-column addition [Maclel-
lan et al., 2016]. Here, we used AL to test the mechanis-
tic hypothesis that retrieval practice involves memory and re-
trieval processes, whereas studying examples involves induc-
tion processes. To do this, we developed a memory mech-
anism in AL and compared the performance of AL agents
learning facts and skills in a setup similar to previous empiri-
cal results with humans (see also Simulation Studies below).
We compare learning outcomes following training of facts
and skills, using retrieval practice (practice-only) or worked
examples (study-practice). In our study, we employed the
same subject matter, but we altered the learning focus be-
tween fact acquisition (e.g, “What is the formula to calculate
the area of a triangle?”) and skill acquisition (e.g. “What is
the area of the triangle below?”).

3 Simulation Studies
3.1 Data
The current work replicates the findings of Carvalho et al.’s
[Carvalho et al., 2022] experiment on the effect of retrieval
practice and worked examples on the different types of
knowledge. In their studies, participants were divided into
four groups: practice-only training of facts, study-practice
training of facts, practice-only training of skills, and study-
practice of skills. The participants learned how to calculate
the area of four different geometrical shapes (rectangle, tri-
angle, circle, and trapezoid) through a training phase consist-
ing of studying examples and practicing memorizing formu-
las or solving problems. Multiple-choice tests were used as
pre/posttests, divided into two types of knowledge: fact-based
(”What is the formula to calculate the area of the square?”)
and skill-based (”What is the area of a square that is 9 ft
wide?”). There was no feedback provided during practices.

To replicate the findings, our materials were adapted from
the original study. Since the focus of our hypothesis is the in-
teraction between types of training and types of knowledge,
we simplify the encoding of the problems such that an agent
can focus on picking the correct production rule and selecting
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the relevant information from the states presented. For ex-
ample, instead of giving an agent a diagram, the input states
include parsed information from the diagram, such as a shape
type or lines’ lengths. This simplification is also plausible as
parsing shapes is likely to be prior knowledge that humans
brought to the task. The solutions to the problems were given
during study sessions, in contrast to only questions without
solutions or feedback in pre/posttests. For fact-based materi-
als, the solutions were in the form of a corresponding string,
while relevant operations, foci-of-attention, and numerical
answers were provided for the skill-based materials.

3.2 Method
To evaluate our hypothesis that memory and forgetting pro-
cesses are necessary for a learning benefit of retrieval prac-
tice, we leveraged the AL framework to create two models
of human learning: a model with forgetting (SLwF) and a
model without forgetting (SLoF). Our memory mechanism
implementation is based on Pavlik et al.’s memory model us-
ing ACT-R [Pavlik and Anderson, 2008]:

mn(t1...m) = β + bk + ln(
n∑

k=1

t−dk

k ) (1)

An activation strength (mn) depends on the base activation
(β), the strength of a practice type (bk), ages of trials (τk), and
decay rates (dk). The decay rate for each trial depends on the
decay scale parameter (c), the intercept of the decay function
(α), and the activation strength of prior trials (mk−1):

dk(mk−1) = cemk−1 + α (2)

The parameters were selected based on an initial parame-
ter manual search. The activation strength of each produc-
tion rule will be updated through the mathematical process
described above, every time it is successfully retrieved both
through demonstrations/examples or practice testing, but with
different corresponding parameter values depending on the
type of training. The probability of a successful recall for a
production rule will be calculated using the recall equation
when SLs attempt to retrieve the rule. In other words, the
success of a production rule being activated for SLs depends
on the model they are based on. In SLoF, the process is de-
terministic and the applicable rule will always be activated.
However, in SLwF, the process is stochastic, with the proba-
bility of a successful being activated determined by the prob-
ability of a successful recall of the associated production rule.

There were 95 AL agents, each agent matching a human
participant in [Carvalho et al., 2022], assigned to one of four
conditions: practice-only training of facts (N=27), study-
practice training of facts (N=22), practice-only training of
skills (N=18), and study-practice training of skills (N=28).
Each agent went through the same procedure as human par-
ticipants. It completed 16 pretest questions, 4 study sessions,
and then completed 16 posttest question.

In the study session, The agents were divided into two
groups: the practice-only group, where they were trained with

one demonstration (worked example) followed by three prac-
tice tests, and the study-practice condition, where they alter-
nated between both types of training. During the practice
tests, the agents were only provided with binary corrective
feedback without the correct answer. The objective of the
learning process for facts was for the agents to effectively link
the appropriate constant (i.e. a formula string) to the specific
state of the problem, as specified by the constant-constant
condition (e.g. shape == trapezoid corresponds to the for-
mula “A = 1

2 (a + b) ∗ h”). The objective of learning skills,
on the other hand, was for the agents to not only identify the
appropriate formula to apply, but also to select the relevant
variables from the given state of the problem, as outlined by
the variable-variable condition (e.g. shape == square, base-
length == 5, and diagonal-length ==

√
50 corresponds to 52).

To account for participants’ prior knowledge, we pre-
trained each SL to match human pretest performance [Weit-
ekamp III et al., ] (M = 0.59 and 0.60, for facts and skills).

4 Results
4.1 Learning Gain
Similar to Carvalho et al. [Carvalho et al., 2022], we analyzed
posttest performance controlling for pretest performance, for
each type of trained concept (skills vs. facts) and training type
(practice-only, vs. study-practice). A two-way ANOVA was
performed to analyze the effects of type of training and type
of concept studied on learning gains, and the results showed
that there was a statistically significant interaction between
the effects of type of training and type of concept in SLwF
(F(1, 471) = 9.448, p = .002), but none was found in the SLoF
(F(1, 471) = -3.843, p = 1). Moreover, consistent with our
prediction, simple main effects analysis showed that the type
of training did have a statistically significant effect on learn-
ing gains in SLoF (F(1, 471) = 7.364, p = 0.007), but not in
SLwF (F(1, 471) = 0.845, p = 0.359). On the other hand, the
type of concept studied had a statistically significant effect on
learning gains in both SLwF (F(1, 471) = 13.052, p ¡ 0.001)
and SLoF (F(1, 471) = 29.055, p ¡ 0.001). The similar pat-
tern can also be seen in Fig. 1, comparing the learning gains
for each condition between human participants (a), SLs with-
out forgetting - SLoF (b), and SLs with forgetting - SLwF
(c). The results indicate that SLwF in a study-practice condi-
tion led to higher learning gains for skills than a practice-only
condition (19.9% vs 15.8%), t(228) = -2.404, p = 0.009, but
the opposite was true for facts (12.7% vs 15.6%), t(243) =
2.072, p = 0.020. However, SLoF led to higher learning gains
for both skills (26.1% vs 24.4%), t(228) = 1.106, p = 0.135
and facts (21.6% vs 20.0%), t(243) = -1.713, p = 0.044, in the
study-practice condition. These results suggest that SLwF
better align with human learning patterns.

4.2 Error Type
To further investigate the extent to which memory plays a
role in this mechanistic hypothesis, we analyzed the types of
errors made by SLwF at posttest (since SLoF cannot com-
mit a memory-based error, it would be unnecessary to con-
duct the analysis). We classified errors into two categories:
memory-based and induction-based. Memory-based errors
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Figure 1: Learning Gains Comparison between type of training and type of concept.

occurred when an applicable production rule was learned but
not retrieved in the final test, whereas induction-based er-
rors occurred when incorrect production rules were found or
none were found. Overall, SLwF committed more induction-
based errors than memory-based errors (56.2% vs 43.8%).
Additionally, SLwF in practice-only condition committed
fewer memory-based errors compared to the ones from study-
practice condition (41.8% vs 45.7%), but more induction-
based errors (58.2% vs 54.2%), t(466) = -1.467, p = 0.072;
even though, both groups exhibited similar proportions of
both categories (82.7% vs 83.9% for induction-based errors
and 17.3% vs 16.1% for memory-based errors) at pretest.

5 General Discussion
Our results indicate SLwF align well with humans, with re-
trieval practice being more effective for facts and worked ex-
amples being more effective for skills. In contrast, for SLoF,
worked examples are more beneficial for both facts and skills,
as the lack of a memory mechanism does not allow for the
benefits of retrieval practice to be realized. This supports our
hypothesis that, according to the KLI framework, retrieval
practice improves memory processes and strengthens asso-
ciations, making it beneficial for learning facts where all pre-
sented information is important. Conversely, studying exam-
ples improves inference processes and information selection
for encoding, making it beneficial for learning skills where
only a subset of presented information is relevant.

Interestingly, the introduction of a memory mechanism
slightly decreases learning gains (22.2% for SLoF vs 13.7%
for SLwF), t(948) = 9.409, p ¡ 0.0001, but does not negate
the benefits of worked examples over retrieval practice for
skills. Furthermore, the breakdown of error categories re-
vealed more induction-based errors than memory-based er-
rors (59.1% vs 40.9%). This supports our hypothesis that
skills learning involves more selectivity and inference, which
are better aided by worked examples than by increased mem-
ory activation through retrieval practice.

In fact, the gap between retrieval practice and worked ex-
amples for skill learning increases even more in SLwF (1.7%
vs 3.1%). A closer examination suggested that this is because
they can ”forget” incorrect production rules, so the correct
rules are used more effectively. SLwF were found to be more
likely to select the correct production rules, due to stronger

memory activation (because correct production rules are usu-
ally learned after incorrect ones, and not vice versa, allowing
the correct production rules to have a stronger activation in
memory). This offers a cursory insight into the importance of
”forgetting” misconceptions for successful learning, but fur-
ther research is required to fully understand this mechanism.

Here, we have presented evidence that computational mod-
els of human learning can be a bridge between learning theory
and data. This approach allows for an examination of learn-
ing theory in a variety of scenarios. In particular, Carvalho et
al. [Carvalho et al., 2022] have proposed a plausible mech-
anism to explain the inconsistencies between the effects of
retrieval practices and worked examples on learning focusing
on the selectivity of encoding of the tasks. Leveraging com-
putational models of learning, we employed SLs as a means
of validating the proposed theoretical framework. These SLs
served as a valuable tool for investigating the mechanism of
learning in greater depth, as we were able to analyze the types
of errors made during the learning process. Additionally, by
comparing the proposed theory to other existing theories, we
were able to determine which theory best aligns with human
data. Furthermore, an in-depth examination of SLs revealed
interesting insights, such as the potential benefits of forgetting
in skill acquisition, which can serve as a guide for future re-
search directions. Therefore, we have emphasized the possi-
bilities that can be achieved through the use of computational
models in education research.

6 Conclusions
This study has highlighted the utility of computational mod-
els of human learning in bridging the gap between learning
theory and data, as demonstrated through examination of un-
expected learning phenomena. We started with an unexpected
learning phenomena (inconsistencies in the effects of retrieval
practices and worked examples on learning), and a proposed
plausible mechanism (a mechanism focusing on the selectiv-
ity of encoding of the tasks). Then, with computational mod-
els, we were able to not only confirm but also examine this
proposed learning theory in more depth, which highlights the
potential of computational models in the field of education
research. Our findings demonstrate the potential for these
models to inform the development of more effective teaching
strategies and guide future research in this area.
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