
Proof Logging for Smart Extensional Constraints (Extended Abstract)∗

Matthew J. McIlree , Ciaran McCreesh
University of Glasgow, Glasgow, Scotland

m.mcilree.1@research.gla.ac.uk, ciaran.mccreesh@glasgow.ac.uk

Abstract

Proof logging provides an auditable way of guar-
anteeing that a solver has produced a correct an-
swer using sound reasoning. This is standard prac-
tice for Boolean satisfiability solving, but for con-
straint programming, a challenge is that every prop-
agator must be able to justify all inferences it per-
forms. Here we demonstrate how to support proof
logging for a wide range of previously uncertified
global constraints. We do this by showing how to
justify every inference that could be performed by
the propagation algorithms for two families of gen-
eralised extensional constraint: “Smart Table” and
“Regular Language Membership”.

1 Overview
A proof log for a problem-solving algorithm provides a ver-
ifiable certificate that the result is correct, and also an au-
ditable record of the steps taken to obtain that result. In the
field of Boolean satisfiability (SAT), proof-logging has be-
come an expected capability of modern solvers, with a se-
ries of proof formats including DRAT [Heule et al., 2013a;
Heule et al., 2013b], LRAT [Cruz-Filipe et al., 2017], and
FRAT [Baek et al., 2021] widely accepted for independent
verification. A similar standard practice has not yet been
adopted for Constraint Programming (CP) due to the diffi-
culties of creating easily verifiable proofs for the more ex-
pressive formulations and reasoning present in this paradigm.
However, recent work by Gocht et al. [Gocht et al., 2022] has
shown how the VeriPB proof system [Bogaerts et al., 2023;
Gocht, 2022] can be used to certify the reasoning carried out
for several important expressive global constraints, offering
a strong candidate for a complete, general CP proof logging
method. In this setting, every propagator for a global con-
straint must be able to do two things: describe its seman-
tics in a lower-level pseudo-Boolean format, and justify any
reasoning it carries out using either cutting planes [Cook et
al., 1987] or reverse unit propagation (RUP) [Goldberg and

∗This paper was presented at the 29th International Conference
on Principles and Practice of Constraint Programming, CP 2023
[McIlree and McCreesh, 2023]

Novikov, 2003] reasoning. Describing a constraint’s seman-
tics is a well-understood problem, but justifying propaga-
tion is not. Gocht et al. demonstrated proof logging for a
range of global constraints and propagation strengths, includ-
ing bounds-consistent integer linear inequalities and domain-
consistent table constraints, but it remains an open question
whether every global constraint propagation algorithm can be
justified in this manner.

This work showed that the reasoning carried out by
domain-consistent propagators for the SmartTable [Mairy
et al., 2015] and Regular [Pesant, 2004] constraints can
similarly be proof logged efficiently inside the VeriPB proof
system. As well as being useful in their own right, these
two constraints provide the necessary building blocks for
implementing many others, since they allow for efficient
strong propagation for extensional constraints that cannot
be expressed efficiently as a conventional table. For ex-
ample, SmartTable can be used to implement the Lex,
AtMostOne and NotAllEqual constraints [Mairy et
al., 2015], whilst Regular can be used to implement
Stretch, Geost and DiffN [Lagerkvist and Pesant,
2008; Pesant, 2004]. Together, these two new constraints
bring us a lot closer to fully auditable combinatorial solving,
particularly in areas such as workforce scheduling where le-
gal restrictions apply, and where algorithmic decisions can
have a large effect upon people’s livelihoods.

2 Implementation and Validation
We implemented both of these proof logging propagation al-
gorithms inside the open-source Glasgow Constraint Solver
[McCreesh and McIlree, 2023]. Our implementation added
two new constraints Regular and SmartTable, with spe-
cific functionality to produce the required encodings and jus-
tifying propagators. They can therefore be used in conjunc-
tion with the rest of the constraint types already available in
the solver.

We validated the implementations by first modelling some
key examples. For SmartTable, these included the repre-
sentation of lexicographic ordering problems, and problems
where at most one variable takes a value, as given by Mairy
et al. [Mairy et al., 2015], as well as several illustrative exam-
ples. For Regular, we implemented both examples 1 and 2
from Pesant [Pesant, 2004].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8444



We carried out further experimental validation by generat-
ing random (acyclic) smart tables, and random DFAs on se-
quences of up to five variables and solving the correspond-
ing single-constraint problems. In all tests and examples,
the solver produced an OPB model and proof files, and we
checked these using the VeriPB proof checker. We also found
that although proof logging incurs an obvious performance
cost, the observed overheads were not unreasonable, giving a
slowdown factor of between 2 and 10. As proofs are written
currently written directly to disk, this can be very hardware
dependent, and also dependent on how optimised the prop-
agator implementation is. We decided to leave further engi-
neering and optimisation of proof writing to future work.

During development some very subtle bugs in both prop-
agator implementations that had eluded conventional testing
were caught immediately by proof logging. For example, in
an incremental version of the Regular propagator, an un-
sound inference was being made due to mixing up variable
names, but in such a way that a situation where this unsound
inference would actually lead to an incorrect solution was ex-
tremely rare (only in specially constructed instances, created
once we were made aware of the bug due to proof logging).
After correcting bugs such as these, all proofs were certified
by VeriPB as being correct.

3 Conclusion
We have shown that we can efficiently justify all the rea-
soning that could possibly be carried out for two families
of smart extensional constraints. An interesting observa-
tion is that justifying this reasoning required only the RUP
rule, and this rule was only to provide hints of algorith-
mic steps that were already being carried out by the prop-
agators. In effect, we are logging a sequence of “looka-
head to see immediate contradiction” steps. We did not re-
quire any explicit cutting planes derivations, and although
we relied upon pseudo-Boolean constraints to make it sim-
ple to express reifications and negations, in principle every-
thing we did should also be possible in a weaker proof en-
coding and proof system such as CNF and DRAT. The only
caveat is that we do rely upon strong propagation properties
for encoded integer variables, which would limit approaches
based upon Boolean satisfiability to integer variables with
very small domains. This is in contrast to constraints like
AllDifferent and Linear, which cannot be logged ef-
ficiently in resolution-based approaches [Elffers et al., 2020;
Gocht et al., 2022].

We expect that other global constraints, even those with
complex propagation algorithms will be similarly feasible to
proof log using this technique. Richer smart tables, such as
those with offset or ternary restrictions [Boussemart et al.,
2016], also fit into our framework, although the justification
of the filtering inferences for each restriction may require ad-
ditional cutting planes steps. Furthermore, the propagation of
“Multi-Valued Decision Diagram”-based constraints [Hoda et
al., 2010] can be viewed as a generalisation of the techniques
used for the regular language membership constraint, and so
it seems very plausible that a similar proof logging method-
ology as demonstrated in this paper could work here. This

bodes well for being able to provide auditable solving for
most global constraints that might occur in a modern solver.

Acknowledgments
The authors would like to thank Jakob Nordström for sev-
eral helpful discussions regarding pseudo-Boolean encodings
and unit propagation. Ciaran McCreesh was supported by a
Royal Academy of Engineering research fellowship. Part of
this work was done while the authors were participating in a
programme at the Simons Institute for the Theory of Comput-
ing.

References
[Baek et al., 2021] Seulkee Baek, Mario Carneiro, and Mar-

ijn J. H. Heule. A flexible proof format for SAT solver-
elaborator communication. In Tools and Algorithms for the
Construction and Analysis of Systems: 27th International
Conference, TACAS 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27
– April 1, 2021, Proceedings, Part I, page 59–75, Berlin,
Heidelberg, 2021. Springer-Verlag.

[Bogaerts et al., 2023] Bart Bogaerts, Stephan Gocht, Cia-
ran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. J.
Artif. Intell. Res., 77:1539–1589, 2023.

[Boussemart et al., 2016] Frédéric Boussemart, Christophe
Lecoutre, and Cédric Piette. XCSP3: an integrated for-
mat for benchmarking combinatorial constrained prob-
lems. CoRR, abs/1611.03398, 2016.

[Cook et al., 1987] William J. Cook, Collette R. Coullard,
and György Turán. On the complexity of cutting-plane
proofs. Discret. Appl. Math., 18(1):25–38, 1987.

[Cruz-Filipe et al., 2017] Luı́s Cruz-Filipe, Marijn J. H.
Heule, Warren A. Hunt, Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In
Leonardo de Moura, editor, Automated Deduction – CADE
26, pages 220–236, Cham, 2017. Springer International
Publishing.

[Elffers et al., 2020] Jan Elffers, Stephan Gocht, Ciaran Mc-
Creesh, and Jakob Nordström. Justifying All Differences
Using Pseudo-Boolean Reasoning. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(02):1486–
1494, April 2020.

[Gocht et al., 2022] Stephan Gocht, Ciaran McCreesh, and
Jakob Nordström. An Auditable Constraint Programming
Solver. In Christine Solnon, editor, 28th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP 2022), volume 235 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:18,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[Gocht, 2022] Stephan Gocht. Certifying Correctness for
Combinatorial Algorithms by Using Pseudo-Boolean Rea-
soning. PhD thesis, Lund University, Sweden, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8445



[Goldberg and Novikov, 2003] Evguenii I. Goldberg and
Yakov Novikov. Verification of proofs of unsatisfiabil-
ity for CNF formulas. In 2003 Design, Automation and
Test in Europe Conference and Exposition (DATE 2003),
3-7 March 2003, Munich, Germany, pages 10886–10891.
IEEE Computer Society, 2003.

[Heule et al., 2013a] Marijn J. H. Heule, Warren A. Hunt,
and Nathan Wetzler. Verifying refutations with extended
resolution. In Maria Paola Bonacina, editor, Automated
Deduction – CADE-24, pages 345–359, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[Heule et al., 2013b] Marijn J.H. Heule, Warren A. Hunt,
and Nathan Wetzler. Trimming while checking clausal
proofs. In 2013 Formal Methods in Computer-Aided De-
sign, pages 181–188, 2013.

[Hoda et al., 2010] Samid Hoda, Willem Jan van Hoeve, and
John N. Hooker. A systematic approach to MDD-based
constraint programming. In David Cohen, editor, Princi-
ples and Practice of Constraint Programming - CP 2010
- 16th International Conference, CP 2010, St. Andrews,
Scotland, UK, September 6-10, 2010. Proceedings, vol-
ume 6308 of Lecture Notes in Computer Science, pages
266–280. Springer, 2010.

[Lagerkvist and Pesant, 2008] Mikael Z Lagerkvist and
Gilles Pesant. Modeling irregular shape placement
problems with regular constraints. In First workshop on
bin packing and placement constraints BPPC’08, 2008.

[Mairy et al., 2015] Jean-Baptiste Mairy, Yves Deville, and
Christophe Lecoutre. The Smart Table Constraint. In
Laurent Michel, editor, 12th International Conference on
Integration of AI and OR Techniques in Constraint Pro-
gramming (CPAIOR 2015), Lecture Notes in Computer
Science, pages 271–287, Cham, 2015. Springer Interna-
tional Publishing.

[McCreesh and McIlree, 2023] Ciaran McCreesh and
Matthew McIlree. The Glasgow Constraint Solver.
GitHub repository, 2023.

[McIlree and McCreesh, 2023] Matthew J. McIlree and Cia-
ran McCreesh. Proof logging for smart extensional con-
straints. In Roland H. C. Yap, editor, 29th International
Conference on Principles and Practice of Constraint
Programming, CP 2023, August 27-31, 2023, Toronto,
Canada, volume 280 of LIPIcs, pages 26:1–26:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Pesant, 2004] Gilles Pesant. A Regular Language Mem-
bership Constraint for Finite Sequences of Variables. In
Mark Wallace, editor, 10th International Conference on
Principles and Practice of Constraint Programming (CP
2004), Lecture Notes in Computer Science, pages 482–
495, Berlin, Heidelberg, 2004. Springer.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8446


	Overview
	Implementation and Validation
	Conclusion

