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Abstract

Proof logging provides an auditable way of guar-
anteeing that a solver has produced a correct an-
swer using sound reasoning. This is standard prac-
tice for Boolean satisfiability solving, but for con-
straint programming, a challenge is that every prop-
agator must be able to justify all inferences it per-
forms. Here we demonstrate how to support proof
logging for a wide range of previously uncertified
global constraints. We do this by showing how to
justify every inference that could be performed by
the propagation algorithms for two families of gen-
eralised extensional constraint: “Smart Table” and
“Regular Language Membership”.

1 Overview
A proof log for a problem-solving algorithm provides a ver-
ifiable certificate that the result is correct, and also an au-
ditable record of the steps taken to obtain that result. In the
field of Boolean satisfiability (SAT), proof-logging has be-
come an expected capability of modern solvers, with a se-
ries of proof formats including DRAT [Heule et al., 2013a;
Heule et al., 2013b], LRAT [Cruz-Filipe et al., 2017], and
FRAT [Baek et al., 2021] widely accepted for independent
verification. A similar standard practice has not yet been
adopted for Constraint Programming (CP) due to the diffi-
culties of creating easily verifiable proofs for the more ex-
pressive formulations and reasoning present in this paradigm.
However, recent work by Gocht et al. [Gocht et al., 2022] has
shown how the VeriPB proof system [Bogaerts et al., 2023;
Gocht, 2022] can be used to certify the reasoning carried out
for several important expressive global constraints, offering
a strong candidate for a complete, general CP proof logging
method. In this setting, every propagator for a global con-
straint must be able to do two things: describe its seman-
tics in a lower-level pseudo-Boolean format, and justify any
reasoning it carries out using either cutting planes [Cook et
al., 1987] or reverse unit propagation (RUP) [Goldberg and
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Novikov, 2003] reasoning. Describing a constraint’s seman-
tics is a well-understood problem, but justifying propaga-
tion is not. Gocht et al. demonstrated proof logging for a
range of global constraints and propagation strengths, includ-
ing bounds-consistent integer linear inequalities and domain-
consistent table constraints, but it remains an open question
whether every global constraint propagation algorithm can be
justified in this manner.

This work showed that the reasoning carried out by
domain-consistent propagators for the SmartTable [Mairy
et al., 2015] and Regular [Pesant, 2004] constraints can
similarly be proof logged efficiently inside the VeriPB proof
system. As well as being useful in their own right, these
two constraints provide the necessary building blocks for
implementing many others, since they allow for efficient
strong propagation for extensional constraints that cannot
be expressed efficiently as a conventional table. For ex-
ample, SmartTable can be used to implement the Lex,
AtMostOne and NotAllEqual constraints [Mairy et
al., 2015], whilst Regular can be used to implement
Stretch, Geost and DiffN [Lagerkvist and Pesant,
2008; Pesant, 2004]. Together, these two new constraints
bring us a lot closer to fully auditable combinatorial solving,
particularly in areas such as workforce scheduling where le-
gal restrictions apply, and where algorithmic decisions can
have a large effect upon people’s livelihoods.

2 Implementation and Validation
We implemented both of these proof logging propagation al-
gorithms inside the open-source Glasgow Constraint Solver
[McCreesh and McIlree, 2023]. Our implementation added
two new constraints Regular and SmartTable, with spe-
cific functionality to produce the required encodings and jus-
tifying propagators. They can therefore be used in conjunc-
tion with the rest of the constraint types already available in
the solver.

We validated the implementations by first modelling some
key examples. For SmartTable, these included the repre-
sentation of lexicographic ordering problems, and problems
where at most one variable takes a value, as given by Mairy
et al. [Mairy et al., 2015], as well as several illustrative exam-
ples. For Regular, we implemented both examples 1 and 2
from Pesant [Pesant, 2004].
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We carried out further experimental validation by generat-
ing random (acyclic) smart tables, and random DFAs on se-
quences of up to five variables and solving the correspond-
ing single-constraint problems. In all tests and examples,
the solver produced an OPB model and proof files, and we
checked these using the VeriPB proof checker. We also found
that although proof logging incurs an obvious performance
cost, the observed overheads were not unreasonable, giving a
slowdown factor of between 2 and 10. As proofs are written
currently written directly to disk, this can be very hardware
dependent, and also dependent on how optimised the prop-
agator implementation is. We decided to leave further engi-
neering and optimisation of proof writing to future work.

During development some very subtle bugs in both prop-
agator implementations that had eluded conventional testing
were caught immediately by proof logging. For example, in
an incremental version of the Regular propagator, an un-
sound inference was being made due to mixing up variable
names, but in such a way that a situation where this unsound
inference would actually lead to an incorrect solution was ex-
tremely rare (only in specially constructed instances, created
once we were made aware of the bug due to proof logging).
After correcting bugs such as these, all proofs were certified
by VeriPB as being correct.

3 Conclusion
We have shown that we can efficiently justify all the rea-
soning that could possibly be carried out for two families
of smart extensional constraints. An interesting observa-
tion is that justifying this reasoning required only the RUP
rule, and this rule was only to provide hints of algorith-
mic steps that were already being carried out by the prop-
agators. In effect, we are logging a sequence of “looka-
head to see immediate contradiction” steps. We did not re-
quire any explicit cutting planes derivations, and although
we relied upon pseudo-Boolean constraints to make it sim-
ple to express reifications and negations, in principle every-
thing we did should also be possible in a weaker proof en-
coding and proof system such as CNF and DRAT. The only
caveat is that we do rely upon strong propagation properties
for encoded integer variables, which would limit approaches
based upon Boolean satisfiability to integer variables with
very small domains. This is in contrast to constraints like
AllDifferent and Linear, which cannot be logged ef-
ficiently in resolution-based approaches [Elffers et al., 2020;
Gocht et al., 2022].

We expect that other global constraints, even those with
complex propagation algorithms will be similarly feasible to
proof log using this technique. Richer smart tables, such as
those with offset or ternary restrictions [Boussemart et al.,
2016], also fit into our framework, although the justification
of the filtering inferences for each restriction may require ad-
ditional cutting planes steps. Furthermore, the propagation of
“Multi-Valued Decision Diagram”-based constraints [Hoda et
al., 2010] can be viewed as a generalisation of the techniques
used for the regular language membership constraint, and so
it seems very plausible that a similar proof logging method-
ology as demonstrated in this paper could work here. This

bodes well for being able to provide auditable solving for
most global constraints that might occur in a modern solver.
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