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Abstract
Both Transformer and Graph Neural Networks
(GNNs) have been used in learning to rank (LTR),
however, they adhere to two distinct yet complemen-
tary problem formulations, i.e., ranking score regres-
sion based on query-webpage pairs and link predic-
tion within query-webpage bipartite graphs, respec-
tively. Though it is possible to pre-train GNNs or
Transformers on source datasets and fine-tune them
subject to sparsely annotated LTR datasets sepa-
rately, the source-target distribution shifts across the
pairs and bipartite graphs domains make it extremely
difficult to integrate these diverse models into a sin-
gle LTR framework at a web-scale. We introduce
the novel MPGraf model, which utilizes a modular
and capsule-based pre-training approach, aiming to
incorporate regression capacities from Transformers
and link prediction capabilities of GNNs cohesively.
We conduct extensive offline and online experiments
to evaluate the performance of MPGraf.

1 Introduction
The recent advancements in deep learning have notably
ushered in a juxtaposition of numerous datasets and mod-
els to solve complex problems. In Learning to Rank
(LTR), the use of both Transformers[Vaswani et al., 2017;
Li et al., 2024] and Graph Neural Networks (GNNs) have
taken center stage, each contributing its distinctive capa-
bilities to the LTR problem formulations[Li et al., 2022;
Li et al., 2023c]. While Transformers, such as context-aware
self-attention model[Pobrotyn et al., 2020], handle the rank-
ing score regression based on query-webpage pairs, GNNs,
e.g., LightGCN[He et al., 2020], offer solutions for link
prediction via query-webpage bipartite graphs. Although
graphformer[Yang et al., 2021] has been proposed to com-
bine advantages from GNNs and Transformers for represen-
tation learning with textual graphs, there still lack of joint
efforts from the two domains (i.e., query-webpage pairs and
graphs) in LTR. In order to improve the performance of

∗This work was initially presented at IEEE ICDM2023.

over-parameterized models like Transformers or GNNs, the
paradigm of pre-training and fine-tuning has been extensively
employed. This involves firstly training the models on large-
scale source datasets in an unsupervised or self-supervised
manner to develop their core representation learning capabili-
ties [Qiang et al., 2023]. Subsequently, the pre-trained models
can be fine-tuned using a small number of annotated samples
from the target datasets [Kirichenko et al., 2022]. However,
such paradigm could not be easily followed by the LTR mod-
els leveraging both query-webpage pairs and graphs together.
Despite separate fine-tuning of GNN or Transformer models
yielding results, the distribution shifts between source and
target datasets across the pairs and bipartite graphs domains,
coupled with the rich diversity of these models, present im-
mense challenges when integrating them into a unified LTR
framework applicable.

To solve this problem, we propose MPGraf—a modular
and pre-trained graphformer for learning to rank at web-scale.
Compared to the vanilla graphformers [Yang et al., 2021],
which parallelize GNN and Transformer modules for two-way
feature extraction and predict with fused features, MPGraf
can choose to either parallelize or stack these two modules for
feature learning in a hybrid architectural design. Then, MP-
Graf leverages a three-step approach: (1) Graph Construction
with Link Rippiling; (2) Representation Learning with Hybrid
Graphformer; (3) Surgical Fine-tuning with Modular Compo-
sition, where the first step generates graph-based training data
from sparsely annotated query-webpage pairs, then the sec-
ond step pre-trains the MPGraf’s hybrid graphformer model
including both GNN and Transformer modules composited
in either parallelizing or stacking ways, and finally MPGraf
leverages a surgical fine-tuning strategy to adapt the target
LTR dataset while overcoming cross-domain source-target dis-
tribution shifts. We carry out extensive offline experiments on
a real-world dataset collected from a large-scale search engine.
We also deploy MPGraf at the search engine and implement a
series of online evaluations. The experiment results show that,
compared to the state-of-the-art in webpage ranking, MPGraf
could achieve the best performance on both offline datasets.
Furthermore, MPGraf obtains significant improvements in
online evaluations under fair comparisons.
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Figure 1: The framework of the proposed MPGraf.

2 The Proposed Model
Figure 1 sketches our proposed framework MPGraf. Specifi-
cally, MPGraf first conducts high-quality pseudo-label links
for each unlabeled query-webpage pair by annotating all unla-
beled pairs with pseudo-ranking scores, and then assigns every
query webpages with high-ranking scores and also webpages
with low scores to conduct Query-centered Expanding Ripple
from training data. Next, MPGraf links every webpage to irrel-
evant queries with poor relevance scores to conduct Webpage-
centered Shrinking Ripple. Given the query-webpage graph
for every high-ranked query-webpage pair, MPGraf leverages
a hybrid graphformer architecture to provide both Transformer
and GNN modules with essential capacities of representation
learning, where the graphformer consists of a GNNs module
and a Transformer module. Eventually, MPGraf leverages
a surgical fine-tuning strategy and transfers the pre-trained
weights of both Transformer and GNN modules to adapt the
target dataset while overcoming the source-target distribution
shifts across graph and pair domains.

2.1 Graph Construction with Link Rippling
Query-centered Expanding Ripple. Given the set of queries
Q and the set of webpages D, MPGraf first obtains each possi-
ble query-webpage pair from both datasets, denoted as (qi, d

j
i )

for ∀qi ∈ Q and ∀dji ∈ Di ⊂ D, i.e., the jth webpage re-
trieved for the ith query. For each query-webpage pair (qi, d

j
i ),

MPGraf further extracts an m-dimensional feature vector xi,j

representing the features of the jth webpage under the ith

query. Then, the labeled and unlabeled sets of feature vec-
tors can be presented as XL = {(xi,j , y

i
j)|∀(qi,Di,Y) ∈

XL and ∀dij ∈ Di} and XU = {xi,j |∀(qi,Di) ∈ T U}. MP-
Graf further takes a self-tuning approach [Li et al., 2023d;
Li et al., 2023a] to propagate labels from annotated query-
webpage pairs to unlabeled ones.

Webpage-centered Shrinking Ripple. Though Query-

centered Expanding Ripple algorithm could generate ranking
scores for every query-webpage pair in training data, it is
still difficult to construct webpage-centered graphs using pre-
dicted scores at full-scale. While every query connects to
the webpages with high/low pseudo ranking scores, a web-
page usually only connects to one or very limited highly-
relevant queries and the number of webpages is much larger
than that of effective queries from the perspective of web-
pages. Therefore, there needs to find irrelevant queries for
every webpage. To conduct webpage-centered graphs for a
webpage, MPGraf leverages a Webpage-centered Shrinking
Ripple approach. Given a webpage, MPGraf retrieves all
query-webpage pairs and builds a webpage-centered graph
for every query-webpage with relevance scores higher than 1-
fair [Li et al., 2023b]. Specifically, MPGraf randomly picks up
a query that does not connect to the webpage as the irrelevant
query, then forms the three (i.e., the webpage, a query where
the webpage is highly ranked, and an irrelevant query) into a
webpage-centered graph. Specifically, for a query qi, MPGraf
randomly chooses the webpage from the other query to con-
duct the negative samples di−j and assigns the relevant score
(i.e., 0 or 1) to represent poor relevance. Through this nega-
tive sampling method, MPGraf could build webpage-centered
graphs for the webpage.

2.2 Representation Learning with Hybrid
Graphformer

Given the query-webpage graphs for every high-ranked query-
webpage pair, in this step, MPGraf leverages a Graph-
Transformer (i.e., graphformer) architecture to extract the gen-
eralizable representation and enables LTR in an end-to-end
manner. Specifically, graphformer consists of two modules:
a GNN module and a Transformer module. According to
the relative position between the two modules, graphformer
could be categorized into two types: Stacking Graphformer
and Parallelizing Graphformer.

Stacking Graphformer. Given the query-webpage graphs,
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MPGraf extracts the feature vector of each query and web-
page. Specifically, the feature of query qi and webpage dij

is denoted as x(n=0)
qi and x

(n=0)

di
j

, where n indicates the fea-

ture output from the nth GNN layer. Next, the GNN mod-
ule utilizes the query-webpage interaction graph to propagate
the representations as x(n+1)

qi =
∑

di
j∈Nqi

1
Zx

(n)

di
j
; x

(n+1)

di
j

=∑
qi∈N

di
j

1
Zx

(n)
qi , where Nqi and Ndj,i

represent the set of

webpages that are relevant to query qi and the set of queries
that are relevant to webpage dij , respectively. Moreover,

Z =
√∣∣Nqi

∣∣√∣∣Ndj,i

∣∣ is the normalization term. After N
layers graph convolution operations, MPGraf combines the
representations generated from each layer to form the final rep-
resentation of query qi and webpage dij as boldsymbolxqi =∑N

n=0 αnx
(n)
qi ; xdi

j
=

∑N
n=0 αnx

(n)

di
j

, where αn ∈ [0, 1] is
a hyper-parameter to balance the weight of each layer repre-
sentation. Then, MPGraf combines xqi and xdi

j
to form the

learned pair representation as xG
i,j .

Given the learned vector xG
i,j of a query-webpage pair from

the GNN module, MPGraf leverages a self-attentive encoder
of Transformer to learn a generalizable representation zi,j .
MPGraf first feeds xG

i,j into a fully connected layer and pro-
duces a hidden representation. Later, MPGraf feeds the hidden
representation into a self-attentive autoencoder, which con-
sists of E encoder blocks of Transformer. Specifically, each
encoder block incorporates a multi-head attention layer and
a feed-forward layer, both followed by layer normalization.
Eventually, MPGraf generates the learned representation zS

i,j
from the last encoder block. For each vector of each query-
webpage pair, the whole training process can be formulated as
zS
i,j = fθ(x

(n=0)
qi ,x

(n=0)

di
j

), where θ is the set of parameters
of Stackinig Graphformer.

Parallelizing Graphformer. In contrast to the aforemen-
tioned model, MPGraf parallelizes the GNN module and Trans-
former module to conduct Parallelizing Graphformer. Specif-
ically, given the extracted feature vector of every query and
webpage, MPGraf simultaneously feeds the vectors into two
modules in Parallelizing Graphformer. Similar to Stacking
Graphformer, MPGraf employs the GNN module to learn
the query-webpage pair representation xG

i,j from x
(n=0)
qi and

x
(n=0)

di
j

. Meanwhile, MPGraf first concatenates the feature of

query qi and webpage dij to form the vector of query-webpage

pair x(n=0)
i,j . Then, MPGraf utilizes the self-attentive encoder

of Transformer to generate the learned representation xT
i,j .

Given the learned representation xG
i,j and xT

i,j , MPGraf con-
catenates two items as xC

i,j and performs a linear projection to
transform xC

i,j into a low-dimensional vector space as zP
i,j .

Given the learned generalizable representation zS
i,j or zP

i,j ,
MPGraf adopts an MLP-based regressor to compute the rank-
ing score si,j . Against the ground truth, MPGraf leverages the
ranking loss function.

2.3 Surgical Fine-tuning with Modular
Composition

Pre-training Phase. We pre-train MPGraf on massive LTR
datasets towards relevance ranking and obtain the pre-trained
GNN, Transformer and MLP modules. MPGraf is pre-trained
on various distribution shift datasets to learn the representative
capability by cross-domain ranking-task learning. After pre-
training MPGraf on three datasets, we could get the pre-trained
GNN, Transformer and MLP modules, which have preserved
information in a standard way.

Surgical Fine-tuning Phase. Given the pre-trained three
modules from the pre-training phase, we first tune the parame-
ters in the GNN module and freeze the remaining parameters
in other modules. After tuning the GNN module for several
epochs, we jointly fine-tune the whole modules in MPGraf
on the target dataset. Contrary to the conventional fine-tuning
strategy of directly fine-tuning the whole model, freezing cer-
tain layer parameters can be advantageous since, based on the
interplay between the pre-training and target datasets, some
parameters in these modules, which have been trained on the
pre-training dataset, may already approximate a minimum for
the target distribution. Consequently, by freezing these layers,
it becomes easier to generalize the target distribution.

3 Experiments
3.1 Experimental Setup
We conduct offline experiments using three public collections
(i.e., MSLR-Web30K [Qin and Liu, 2013], MQ2007 [Qin and
Liu, 2013], and MQ2008 [Qin and Liu, 2013]), as well as
a commercial dataset with 15,000 queries and over 770,000
query-webpage pairs collected from a large-scale commercial
search engine. Moreover, we use three evaluation metrics
to assess the performance of ranking models, i.e., NDCG,
∆AB [Chuklin et al., 2015] and GSB [Zhao et al., 2011].

In this work, we adopt different state-of-the-art ranking
losses as RMSE, RankNet [Burges et al., 2006], ListNet [Cao
et al., 2007] and NeuralNDCG [Pobrotyn and Białobrzeski,
2021]. Regarding the ranking model, we compare MPGraf
with the state-of-the-art ranking model as MLP, CR [Pobrotyn
et al., 2020], XGBoost [Chen and Guestrin, 2016] and Light-
GBM [Ke et al., 2017].

3.2 Offline Experimental Results
Comparative Results. The offline evaluation results for com-
mercial data are presented in Table 1. Intuitively, we could
find that MPGraf gains the best performance compared with
all competitors on two metrics under various ratios of labeled
data. Specifically, MPGrafS with NeuralNDCG achieves the
improvement with 1.64%, 1.65%, 1.43% and 1.74% than MLP
with NeuralNDCG on NDCG@10 under four ratios of labeled
data on commercial data. From the comparative results, we
observe that MPGraf could learn better generalizable repre-
sentations with the graphformer architecture for downstream
ranking tasks compared with baselines.

3.3 Online Experimental Results
Table 2 illustrates the performance improvements of the pro-
posed models on ∆AB and ∆GSB. We first observe that MP-
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Methods NDCG@5 NDCG@10

5% 10% 15% 20% 5% 10% 15% 20%

XGBoost 50.70 54.91 58.16 61.43 53.19 58.36 61.75 64.75
LightGBM 51.53 55.74 58.87 62.15 53.94 59.05 62.28 65.98

MLPRMSE 50.12 54.45 57.62 59.64 53.42 57.86 61.34 64.76
MLPRankNet 49.76 54.08 57.41 59.38 53.07 57.37 60.92 64.25
MLPListNet 50.48 54.91 58.05 59.92 53.61 58.04 61.41 64.82
MLPNeuralNDCG 51.05 55.19 58.24 61.21 53.89 58.31 61.82 64.97

CRRMSE 51.24 55.42 58.16 61.43 53.71 58.78 62.08 65.42
CRRankNet 51.36 55.49 58.33 61.49 53.82 58.81 62.15 65.58
CRListNet 51.68 55.85 58.84 61.75 54.14 59.24 62.27 65.92
CRNeuralNDCG 51.98 56.02 59.17 62.04 54.38 59.43 62.39 66.12

MPGrafSRMSE 51.30 55.27 58.55 61.74 54.55 59.04 62.35 65.80
MPGrafSRankNet 51.51 55.43 58.69 61.89 54.62 59.07 62.40 65.87
MPGrafSListNet 52.27 56.21 59.46 62.68 55.32 59.79 63.12 66.62
MPGrafSNeuralNDCG 52.83 56.79 60.08 63.32 55.53 59.96 63.25 66.71

MPGrafPRMSE 51.39 55.36 58.65 61.89 54.61 59.07 62.40 65.91
MPGrafPRankNet 51.52 55.54 58.84 62.09 54.65 59.18 62.51 66.03
MPGrafPListNet 52.34 56.39 59.70 62.97 55.44 59.84 63.20 66.72
MPGrafPNeuralNDCG 52.91 56.98 60.25 63.51 55.67 60.05 63.42 66.94

Table 1: Performance of MPGraf and baselines on commercial data.

Methods ∆AB ∆GSB

Random Long Tail Random Long Tail

Legacy System - - - -
MPGrafSNeuralNDCG 0.36% 0.45% 3.34% 5.50%
MPGrafPNeuralNDCG 0.45% 0.58% 6.67% 7.50%

Table 2: Performance improvements of online evaluation.

Graf with NeuralNDCG achieves substantial improvements
for the online system on two metrics Specifically, our pro-
posed models outperform the legacy system with 0.36% and
0.45% on ∆AB , and achieve significant improvements with
3.34% and 6.67% on ∆GSB for random queries, respectively.
Moreover, we could observe that MPGraf outperforms the
legacy system for long-tail queries whose search frequencies
are lower than 10 per week. In particular, under the long-tail
scenario, parallelizing graphformer-based MPGraf with Neu-
ralNDCG achieves the advantages of ∆AB and ∆GSB are
0.58% and 7.50%.

Figure 2 presents the improvement of MPGraf with various
losses compared with the legacy system on ∆NDCG@5. First,
MPGraf could boost the performance compared with the on-
line legacy system all day, which demonstrates that MPGraf
is practical for improving the performance of the large-scale
search engine. Moreover, we could observe that the trained
MPGraf with NeuralNDCG under four ratios of labeled data
achieves the largest improvements with 0.59%, 0.60%, 0.62%
and 0.53%.

4 Conclusion
In this work, we focus on the use of a Graph-Transformer
architecture to handle LTR in link predictions over query-
webpage bipartite graphs and ranking score regressions based
on query-webpage pairs. We propose MPGraf, where Trans-
former and GNN modules can be composited in either par-
allelizing or stacking architectures. MPGraf constructs web-
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Figure 2: Online comparative performance (∆NDCG@5) of MPGraf
with various losses for 7 days (t-test with p < 0.05 over the baseline).

scale query-webpage bipartite graphs with ranking scores as
edges from pre-training LTR datasets. These graphs, along
with the sparsely annotated query-webpage pairs, are used to
pre-train the graphformer. The pre-trained weights of both
modules are then transferred using the surgical fine-tuning
strategy to adapt to the target dataset, which addresses the
source-target distribution shifts across the graph and pair do-
mains. Furthermore, we performed comprehensive offline and
online experiments. Experimental results show the superior
performance of MPGraf compared to competitors.
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