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Abstract
While learning to rank (LTR) is widely employed
in web searches to prioritize pertinent webpages
from the retrieved contents based on input queries,
traditional LTR models stumble over two principal
stumbling blocks leading to subpar performance:
1) the lack of well-annotated query-webpage pairs
with ranking scores to cover search queries of vari-
ous popularity, debilitating their coverage of search
queries across the popularity spectrum, and 2) ill-
trained models that are incapable of inducing gener-
alized representations for LTR, culminating in over-
fitting. To tackle above challenges, we proposed
a Generative Semi-Supervised Pre-trained (GS2P)
LTR model. We conduct extensive offline exper-
iments on a publicly available dataset and a real-
world dataset collected from a large-scale search
engine. We also deploy GS2P at a large-scale web
search engine with realistic traffic, where we can
observe significant improvement in real-world ap-
plications.

1 Introduction
The booming increase of internet users and web content
surges the demands on web search. In the current digi-
tal epoch, large-scale search engines manage an impressive
archive of trillions of webpages, providing service to hun-
dreds of millions of active users daily while handling billions
of queries. The search procedure commences with a user
query, often a text string, necessitating keyword or phrase
extraction to comprehend user attempting [Zhao et al., 2010;
Li et al., 2023d]. Post identification of keywords, search en-
gines evaluate the relation between the query and webpages,
subsequently retrieving highly relevant ones from their vast
databases [Liu et al., 2021]. These webpages are then sorted
based on content attributes and click-through rates, positioning
the most relevant ones on top of the result [Li et al., 2023a].

The optimization of the user experience, achieved by cater-
ing to information needs, largely depends on the effective

∗This work was initially presented at the 10th IEEE International
Conference on Data Science and Advanced Analytics (DSAA) in
2023 and Machine Learning (MLJ) in 2024.

sorting of retrieved content. In this realm, Learning to Rank
(LTR) becomes instrumental, requiring a considerable amount
of query-webpage pairings with relevancy scores for effec-
tive supervised LTR [Li et al., 2023b; Qin and Liu, 2013;
Li et al., 2023c]. Nevertheless, the commonplace scarcity
of well-described, query-webpage pairings often compels
semi-supervised LTR, harnessing both labeled and unla-
beled samples for the process [Szummer and Yilmaz, 2011;
Zhang et al., 2016]. Recent years have seen the integration of
deep models in LTR, aimed at end-to-end ranking loss mini-
mization [Li et al., 2020; Wang et al., 2021; Li et al., 2022;
Yang and Ying, 2023]. However, these models occasionally
falter in learning generalizable representations from structural
data due to limited or noisy supervision, sometimes resulting
in performance that is weaker compared to statistical learn-
ers [Bruch et al., 2019]. Further discussion on this subject
can be found in a comprehensive review available in a recent
scholarly work [Werner, 2022].

In order to tackle the above issues, we propose Genera-
tive Semi-Supervised Pre-trained LTR (GS2P) model. The
proposed GS2P first generates high-quality pseudo labels
for every unlabeled query-webpage pair through co-training
of multiple/diverse LTR models based on various ranking
losses, then learns generalizable representations with a self-
attentive network using both generative loss and discriminative
loss. Finally, given the generalizable representations of query-
webpage pairs, by incorporating an MLP-based ranker with
Random Fourier Features (RFF), GS2P pushes LTR models
into so-called interpolating regime [Belkin, 2021] and obtains
superb performance improvement. To demonstrate the effec-
tiveness of GS2P, we conduct comprehensive experiments on
a publicly available LTR dataset [Qin and Liu, 2013] and a
real-world dataset collected from a large-scale search engine.
We also deploy GS2P at the search engine and evaluate the
proposed model using online A/B tests in comparison with the
online legacy system.

2 Methodology
2.1 Preliminaries
Given a set of search queries Q = {q1, q2, . . . } and all
archived webpages W = {w1, w2, . . . }, for each query qi ∈
Q, the search engine retrieves a set of relevant webpages
denoted as Wi = {wi

1, w
i
2, . . . } ⊂ W . After annotating,
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Figure 1: The framework of GS2P.

each query qi is assigned with a set of relevance scores yi =
{yi1, yi2, . . . }. In this work, we follow the settings in [Qin
and Liu, 2013; Li et al., 2023e] and scale the relevance score
from 0 to 4 to represent levels of relevance, which represents
whether the webpage w.r.t. the query is bad (0), fair (1), good
(2), excellent (3) or perfect (4). We denote a set of query-
webpage pairs with relevance score annotations as T L =
{(q1,W1,y1), (q2,W2,y2), . . . }. The core problem of semi-
supervised LTR is to leverage unlabeled pairs, i.e., T U =
{(q′1,W ′

1), (q′2,W
′
2), . . . } ⊂ Q and |T U | ≫ |T L|, in the

training process.

2.2 Semi-supervised Pseudo-Label Generation
Given the overall set of queries Q and the set of all webpages
W , GS2P first obtains every possible query-webpage pair from
both datasets, denoted as (qi, w

j
i ) for ∀qi ∈ Q and ∀wj

i ∈
Wi ⊂ W , i.e., the jth webpage retrieved for the ith query. For
each query-webpage pair (qi, w

j
i ), GS2P further extracts an

m-dimensional feature vector xi,j representing the features of
the jth webpage under the ith query. Then, the labeled and
unlabeled sets of feature vectors can be presented as DL =
{(xi,j ,y

i
j)|∀(qi,Wi,y) ∈ T L and ∀wi

j ∈ Wi} and DU =

{xi,j |∀(qi,Wi) ∈ T U}. Inspired by [Li et al., 2023e], GS2P
leverages a semi-supervised learning LTR manner to generate
high-quality pseudo labels for unlabeled samples.

2.3 Self-attentive Representation Learning via
Denoising Autoencoding

Denoised Self-attentive Autoencoder. Given an m-
dimensional feature vector x̃i,j of a query-webpage pair
(x̃i,j ,y

i
j) in combined data, GS2P aims to utilize a self-

attentive encoder to learn a generalizable representation
zi,j . Specifically, given a vector x̃i,j generated from Semi-
supervised Pseudo-Label Generation, GS2P (1) passes it
through a fully-connected layer and produces a hidden rep-
resentation. Then, GS2P (2) feeds the hidden representation
into a self-attentive autoencoder, which consists of B encoder
blocks of Transformer [Vaswani et al., 2017]. In particular,
each encoder block incorporates a multi-head attention layer
and a feed-forward layer, both followed by layer normaliza-
tion. Eventually, GS2P (3) generates the learned representa-

tion zi,j from the last encoder block. For each original feature
vector x̃i,j , the whole training process can be formulated as
zi,j = fθ̃(x̃i,j), where θ̃ is the set of parameters of the self-
attentive encoder.

Given the learned representation zi,j , GS2P leverages an
MLP-based decoder for the reconstruction task. Specifically,
for each representation zi,j produced from the self-attentive
autoencoder, GS2P uses the MLP-based decoder to map zi,j
to a generalizable representation z′

i,j , which has the same
dimension with the original feature vector. The whole training
process can be formulated as z′

i,j = gθ′(zi,j), where the θ′ is
the set of parameters of the MLP-based decoder. Finally, GS2P
jointly optimizes the parameter sets θ̃ and θ′ to minimize the
generative loss as LG = 1

|Q|
1

|Wi|
∑|Q|

i=1

∑|Wi|
j=1 ℓG

(
x̃i,j , z

′
i,j

)
,

where ℓG is the squared error, which could be presented as
ℓG

(
x̃i,j , z

′
i,j

)
= ∥x̃i,j − z′

i,j∥2.
Pre-trained Ranker. Given the learned vector zi,j gener-

ated from Denoised Self-attentive Autoencoder, GS2P lever-
ages a fully-connected layer to obtain predicted scores ri,j as
ri,j = kθ(zi,j), where θ is the set of discriminative parameters
of Pre-trained Ranker. Against the ground truth, GS2P utilizes
the discriminative loss function LD to compute the loss of rank-
ing prediction as LD = 1

|Q|
1

|Wi|
∑|Q|

i=1

∑|Wi|
j=1 ℓD

(
yi
j , ri,j

)
,

where ℓD is denoted as the standard LTR loss function. Then,
GS2P jointly optimizes the discriminative loss LD and the gen-
erative loss LG to accomplish both discriminative (LTR) and
generative (denoising autoencoding for reconstruction) tasks
simultaneously as LFinal = αLD + βLG, where α, β ∈ [0, 1]
are weight coefficients to balance two terms.

2.4 LTR via Over-parameterized MLP
Given the learned representation zi,j ∈ Rn generated from
Self-attentive Representation Learning via Denoising Autoen-
coding, GS2P converts this representation vector into an N -
dimensional version, represented as hi,j = h(zi,j). This
step is implemented using the feature transformation h(z).
In this procedure, GS2P utilizes a transformation rooted in
random Fourier features to execute h(z) [Rahimi and Recht,
2007], thereby mapping the original features of LTR into a
higher dimensional feature space. An important point to con-
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Methods 5% 10% 15% 20%

@4 @10 @4 @10 @4 @10 @4 @10

XGBoost 31.76 34.10 36.72 39.12 39.93 41.01 42.60 45.84
LightGBM 35.72 39.32 39.89 42.05 43.90 45.67 46.56 48.52

RMSE 34.82 38.02 38.75 41.95 42.97 45.65 45.75 48.86
RankNet 34.06 37.43 38.12 41.32 42.24 45.08 45.01 47.89
LambdaRank 35.28 38.50 39.32 42.47 43.40 46.23 46.26 49.56
ListNet 34.36 37.94 38.31 41.76 42.51 45.40 45.32 48.42
ListMLE 33.47 36.95 37.52 40.84 41.53 44.43 44.39 47.26
ApproxNDCG 33.98 37.20 37.94 41.01 42.09 44.70 44.94 47.50
NeuralNDCG 35.15 38.26 39.07 42.10 43.32 45.97 46.08 49.20

CRRMSE 36.04 38.54 39.52 42.48 43.67 46.25 46.86 49.75
CRRankNet 35.90 38.42 39.44 42.37 43.45 45.98 46.70 49.61
CRLambdaRank 36.45 38.93 40.03 43.10 44.36 46.88 47.57 50.47
CRListNet 37.53 40.08 41.28 44.21 45.17 47.73 48.35 51.24
CRListMLE 35.67 38.16 39.40 42.35 43.28 45.86 46.62 49.48
CRApproxNDCG 37.93 40.41 41.47 44.32 45.53 48.03 48.81 51.69
CRNeuralNDCG 37.26 40.65 40.76 43.69 44.85 47.52 48.16 51.13

GS2PRMSE 39.02 40.88 41.80 44.72 45.72 48.22 48.72 51.40
GS2PRankNet 38.15 40.42 40.03 44.21 44.93 47.85 47.85 50.98
GS2PLambdaRank 39.47 41.43 42.17 45.20 46.07 48.89 49.15 51.97
GS2PListNet 39.53 41.62 42.28 45.42 46.15 49.16 49.18 52.20
GS2PListMLE 37.66 39.87 39.80 43.70 44.52 47.28 47.41 50.24
GS2PApproxNDCG 39.57 41.76 42.39 45.65 46.31 49.31 49.25 52.25
GS2PNeuralNDCG 39.72 41.97 42.56 45.83 46.38 49.53 49.36 52.47

Table 1: Results for Web30K on NDCG across diverse labeled data percentages.

sider is that increasing the number of dimensions (N ) leads
to over-parameterization of the LTR model via the addition
of more input features. This scenario brings about a feature-
wise ’double descent’ phenomenon in predicting generaliza-
tion errors [Belkin et al., 2019; Belkin, 2021]. GS2P sets
the optimal value for N , stemming from cross-validation per-
formed on the labeled dataset to ensure the best generalization
performance. Therefore, incorporating hi,j for every pair of
query-webpage paves the path for an over-parameterized LTR
model. This advanced model operates in the interpolating
regime and is projected to exhibit excellent generalization per-
formance [Belkin, 2021]. In this way, GS2P transforms zi,j
into a high-dimensional vector hi,j and constructs a Ranker
(i.e., MLP-based LTR model) for the LTR task with several
popular ranking loss functions.

3 Experiments
3.1 Experimental Setup
Datasets. We carry out the offline experiments on a standard
and publicly available dataset Web30K [Qin and Liu, 2013]
and a real-world dataset commerical dataset collected from
Baidu search engine. Specifically, the commercial Dataset
contains 50,000 queries. The dataset is annotated by a group
of professionals on the crowdsourcing platform, who assign a
score between 0 and 4 to each query-document pair.

Metrics. To assess the performance of various ranking
systems comprehensively, we leverage the following metrics.
Normalized Discounted Cumulative Gain (NDCG) [Järvelin
and Kekäläinen, 2017] is a standard listwise accuracy metric,
which has been commonly used in research and industrial
community. For our online evaluation, we utilize the Good
vs. Same vs. Bad (GSB) [Zhao et al., 2011], which is an
online pairwise-based evaluation methodology evaluated by

annotators. Considering the confidentiality of commercial
information, we only report the difference between the results
of GS2P and the online legacy system [Zou et al., 2021].

Loss Functions and Competitor Systems In this work,
we leverage the following advanced ranking loss functions to
evaluate the proposed model comprehensively, such as RMSE,
RankNet [Burges et al., 2005], LambdaRank [Burges et al.,
2006], ListNet [Cao et al., 2007], ListMLE [Xia et al., 2008],
ApproxNDCG [Qin et al., 2010], and NeuralNDCG [Pobrotyn
and Białobrzeski, 2021]. As for the ranking model, we choose
the following state-of-the-art ranking models as the competi-
tor for GS2P, such as MLP, Context-aware Ranker (CR) [Po-
brotyn et al., 2020], XGBoost [Chen and Guestrin, 2016] and
LightGBM [Ke et al., 2017].

3.2 Offline Experimental Results

Overall Results. Table 1 and 2 present the average results
for offline evaluation, where GS2P is compared with competi-
tors on Web30K and the commercial dataset. Intuitively, we
could observe GS2P outperforms all competitors with differ-
ent losses under various ratios of labeled data on two datasets.
More specifically, GS2P with NeuralNDCG gets 3.60% and
nearly 3.57% higher NDCG@4 and NDCG@10 on Web30K
dataset, compared with the pointwise-based self-trained MLP
model with NeuralNDCG. On Commercial Dataset, GS2P
on average obtains nearly 2.84% and 3.14% improvement
on NDCG@4 and NDCG@10, when compared with Neural-
NDCG. GS2P+NeuralNDCG could gain the most improve-
ment under the less ratio of labeled data on both metrics on
two datasets, which demonstrates the effectiveness of GS2P
under low-resource situations.
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Methods 5% 10% 15% 20%

@4 @10 @4 @10 @4 @10 @4 @10

XGBoost 48.39 52.12 52.83 56.45 56.14 60.03 58.03 62.61
LightGBM 50.48 53.50 54.13 59.04 57.00 62.14 60.47 65.82

RMSE 49.73 53.42 54.13 57.86 57.43 61.34 59.42 64.76
RankNet 49.32 53.07 53.76 57.37 57.08 60.92 59.17 64.25
LambdaRank 50.82 54.24 55.07 58.62 58.16 62.05 61.12 65.28
ListNet 50.26 53.61 54.52 58.04 57.81 61.47 59.74 64.82
ListMLE 48.73 52.46 53.08 56.70 56.32 60.25 58.42 63.68
ApproxNDCG 49.08 52.75 53.44 57.02 56.79 60.61 58.84 64.01
NeuralNDCG 50.68 53.89 54.88 58.31 58.02 61.82 61.03 64.97

CRRMSE 50.43 53.63 54.52 58.70 56.90 61.74 60.42 65.22
CRRankNet 50.86 54.06 54.98 58.26 57.32 61.82 60.83 65.61
CRLambdaRank 52.47 55.67 56.13 59.84 58.90 63.79 61.87 66.59
CRListNet 52.45 55.64 56.08 59.82 58.74 63.24 62.28 67.09
CRListMLE 51.05 54.30 54.76 58.46 57.53 62.01 61.04 65.83
CRApproxNDCG 51.92 55.08 55.68 59.40 58.42 62.87 62.00 66.75
CRNeuralNDCG 52.06 55.31 55.87 59.61 58.67 63.20 62.18 66.84

GS2PRMSE 52.72 55.48 55.89 59.60 58.82 63.13 61.92 66.24
GS2PRankNet 53.13 55.93 56.20 59.92 58.94 63.41 62.28 66.67
GS2PLambdaRank 53.67 56.72 56.90 60.76 59.58 64.19 62.95 67.65
GS2PListNet 54.00 57.18 57.28 61.04 59.93 64.50 63.38 67.96
GS2PListMLE 53.41 56.24 56.51 56.51 59.20 63.72 62.50 66.88
GS2PApproxNDCG 54.23 57.32 57.44 61.12 60.12 64.62 63.58 68.05
GS2PNeuralNDCG 54.36 57.43 57.62 61.25 60.28 64.76 63.72 68.12

Table 2: Results for Commercial Dataset on NDCG across diverse labeled data percentages.

GS2PApproxNDCG GS2PNeuralNDCG

Random Long-Tail Random Long-Tail

∆GSB +3.00% +4.00% +5.50% +6.50%

Table 3: Performance improvements of GS2P with ApproxNDCG
loss and GS2P with NeuralNDCG loss for the online evaluation.

3.3 Online Evaluation

To comprehensively evaluate our proposed model, we con-
duct a manual comparison experiment. Intuitively, manual
comparison results are presented in Table 3. In particular,
we observe that our proposed model outperforms the online
legacy system by a large margin for random and long-tail (i.e.,
the search frequency of the query is lower than 10 per week)
queries. Specifically, GS2P with NeuralNDCG loss achieves
the largest improvement compared with the legacy system
with 5.50% and 6.50% for random and long-tail queries, re-
spectively. Moreover, GS2P with ApproxNDCG loss also
improves the performance for random and long-tail queries.

Figure 2 illustrates the relative performance between GS2P
and the base model, expressed via ∆NCDG@4. Logically,
GS2P shows marked enhancement in performance across all
days when compared to the base system, evidencing its practi-
cal capability in upgrading the efficacy of a large-scale search
engine. Even more impressively, GS2P has shown substantial
growth on this large-scale platform. A prominent highlight is
GS2P outperforming the online base model by a significant
margin of 0.61% relative improvement on ∆NCDG@4, a
feat achieved by the NeuralNDCG loss-trained model using a
nominal 5% labeled data ratio. GS2P has showcased consistent
performance across both online and offline platforms.

1 2 3 4 5 6 7
# of Days

0.0

0.4

0.8

1.2
N

D
CG

@
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) GS2P+RMSE

GS2P+RankNet
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GS2P+Neural

GS2P+ApproxNDCG

Figure 2: A/B test results of GS2P and the legacy system for 7 days
(t-test with p < 0.05 over the baseline).

4 Conclusion

In this work, we design, implement and deploy a generative
semi-supervised pre-trained model GS2P on a real-world large-
scale search engine to address the problems of LTR under
semi-supervised settings. We substantiate the effectiveness of
GS2P through comprehensive offline and online analyses, jux-
taposed against an extensive lineup of rivals. The offline trials
denote a considerable leap in GS2P’s performance relative to
other baselines. Furthermore, GS2P significantly enhances the
online ranking efficacy in practical applications, mirroring the
positive outcomes observed in the offline experiments.
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Kekäläinen. IR evaluation methods for retrieving highly
relevant documents. SIGIR Forum, 51(2):243–250, 2017.

[Ke et al., 2017] Guolin Ke, Qi Meng, Thomas Finley,
Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information
Processing Systems, pages 3146–3154, 2017.

[Li et al., 2020] Minghan Li, Xialei Liu, Joost van de Weijer,
and Bogdan C. Raducanu. Learning to rank for active learn-
ing: A listwise approach. In 25th International Conference
on Pattern Recognition, pages 5587–5594, 2020.

[Li et al., 2022] Yuchen Li, Haoyi Xiong, Linghe Kong, Rui
Zhang, Dejing Dou, and Guihai Chen. Meta hierarchical
reinforced learning to rank for recommendation: A compre-
hensive study in moocs. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases,
pages 302–317, 2022.

[Li et al., 2023a] Yuchen Li, Haoyi Xiong, Linghe Kong,
Zeyi Sun, Hongyang Chen, Shuaiqiang Wang, and Dawei
Yin. Mpgraf: a modular and pre-trained graphformer for
learning to rank at web-scale. In 2023 IEEE International
Conference on Data Mining (ICDM), pages 339–348. IEEE,
2023.

[Li et al., 2023b] Yuchen Li, Haoyi Xiong, Linghe Kong,
Qingzhong Wang, Shuaiqiang Wang, Guihai Chen, and
Dawei Yin. S2phere: Semi-supervised pre-training for web
search over heterogeneous learning to rank data. In Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 4437–4448, 2023.

[Li et al., 2023c] Yuchen Li, Haoyi Xiong, Linghe Kong,
Shuaiqiang Wang, Zeyi Sun, Hongyang Chen, Guihai Chen,
and Dawei Yin. Ltrgcn: Large-scale graph convolutional
networks-based learning to rank for web search. In Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 635–651. Springer,
2023.

[Li et al., 2023d] Yuchen Li, Haoyi Xiong, Linghe Kong, Rui
Zhang, Fanqin Xu, Guihai Chen, and Minglu Li. Mhrr:
Moocs recommender service with meta hierarchical rein-
forced ranking. IEEE Transactions on Services Computing,
2023.

[Li et al., 2023e] Yuchen Li, Haoyi Xiong, Qingzhong Wang,
Linghe Kong, Hao Liu, Haifang Li, Jiang Bian, Shuaiqiang
Wang, Guihai Chen, Dejing Dou, et al. Coltr: Semi-
supervised learning to rank with co-training and over-
parameterization for web search. IEEE Transactions on
Knowledge and Data Engineering, 2023.

[Liu et al., 2021] Yiding Liu, Weixue Lu, Suqi Cheng, Dait-
ing Shi, Shuaiqiang Wang, Zhicong Cheng, and Dawei
Yin. Pre-trained language model for web-scale retrieval in
baidu search. In KDD ’21: The 27th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, pages
3365–3375, 2021.

[Pobrotyn and Białobrzeski, 2021] Przemysław Pobrotyn
and Radosław Białobrzeski. Neuralndcg: Direct optimi-
sation of a ranking metric via differentiable relaxation of
sorting. arXiv preprint arXiv:2102.07831, 2021.

[Pobrotyn et al., 2020] Przemysław Pobrotyn, Tomasz
Bartczak, Mikołaj Synowiec, Radosław Białobrzeski,
and Jarosław Bojar. Context-aware learning to rank with
self-attention. arXiv preprint arXiv:2005.10084, 2020.

[Qin and Liu, 2013] Tao Qin and Tie-Yan Liu. Introducing
letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.

[Qin et al., 2010] Tao Qin, Tie-Yan Liu, and Hang Li. A
general approximation framework for direct optimization
of information retrieval measures. Inf. Retr., 13(4):375–397,
2010.

[Rahimi and Recht, 2007] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines. In Ad-
vances in Neural Information Processing Systems 20, Pro-
ceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, pages 1177–1184, 2007.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8437



[Szummer and Yilmaz, 2011] Martin Szummer and Emine
Yilmaz. Semi-supervised learning to rank with preference
regularization. In Proceedings of the 20th ACM Confer-
ence on Information and Knowledge Management, pages
269–278, 2011.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Pro-
cessing Systems, pages 5998–6008, 2017.

[Wang et al., 2021] Ruoxi Wang, Rakesh Shivanna,
Derek Zhiyuan Cheng, Sagar Jain, Dong Lin, Lichan
Hong, and Ed H. Chi. DCN V2: improved deep & cross
network and practical lessons for web-scale learning to
rank systems. In WWW ’21: The Web Conference, pages
1785–1797, 2021.

[Werner, 2022] Tino Werner. A review on instance ranking
problems in statistical learning. Mach. Learn., 111(2):415–
463, 2022.

[Xia et al., 2008] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng
Zhang, and Hang Li. Listwise approach to learning to rank:
theory and algorithm. In Machine Learning, Proceedings
of the Twenty-Fifth International Conference, pages 1192–
1199, 2008.

[Yang and Ying, 2023] Tianbao Yang and Yiming Ying. AUC
maximization in the era of big data and AI: A survey. ACM
Comput. Surv., 55(8):172:1–172:37, 2023.

[Zhang et al., 2016] Xin Zhang, Ben He, and Tiejian Luo.
Training query filtering for semi-supervised learning to
rank with pseudo labels. World Wide Web, 19(5):833–864,
2016.

[Zhao et al., 2010] Shiqi Zhao, Haifeng Wang, and Ting Liu.
Paraphrasing with search engine query logs. In COLING
2010, 23rd International Conference on Computational
Linguistics, Proceedings of the Conference, pages 1317–
1325, 2010.

[Zhao et al., 2011] Shiqi Zhao, Haifeng Wang, Chao Li, Ting
Liu, and Yi Guan. Automatically generating questions
from queries for community-based question answering. In
Proceedings of 5th international joint conference on natural
language processing, pages 929–937, 2011.

[Zou et al., 2021] Lixin Zou, Shengqiang Zhang, Hengyi Cai,
Dehong Ma, Suqi Cheng, Shuaiqiang Wang, Daiting Shi,
Zhicong Cheng, and Dawei Yin. Pre-trained language
model based ranking in baidu search. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pages 4014–4022, 2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8438


	Introduction
	Methodology
	Preliminaries
	Semi-supervised Pseudo-Label Generation
	Self-attentive Representation Learning via Denoising Autoencoding
	LTR via Over-parameterized MLP

	Experiments
	Experimental Setup
	Offline Experimental Results
	Online Evaluation

	Conclusion

