
Bagging is an Optimal PAC Learner (Extended Abstract)∗

Kasper Green Larsen
Aarhus University
larsen@cs.au.dk

Abstract
Determining the optimal sample complexity of
PAC learning in the realizable setting was a cen-
tral open problem in learning theory for decades.
Finally, seminal work by Hanneke gave an algo-
rithm with a provably optimal sample complexity.
His algorithm is based on a careful and structured
sub-sampling of the training data and then return-
ing a majority vote among hypotheses trained on
each of the sub-samples. While being a very excit-
ing theoretical result, it has not had much impact
in practice, in part due to inefficiency, since it con-
structs a polynomial number of sub-samples of the
training data, each of linear size.
In this work, we prove the surprising result that the
practical and classic heuristic bagging (a.k.a. boot-
strap aggregation), due to Breiman, is in fact also an
optimal PAC learner. Bagging pre-dates Hanneke’s
algorithm by twenty years and is taught in most un-
dergraduate machine learning courses. Moreover,
we show that it only requires a logarithmic number
of sub-samples to reach optimality.

1 Introduction
PAC learning, or probably approximately correct learn-
ing [Valiant, 1984], is the most classic theoretical model for
studying classification problems in supervised learning. For
binary classification in the realizable setting, the goal is to
design a learning algorithm that with probability 1 − δ over
a random training data set, outputs a hypothesis that mis-
predicts the label of a new random sample with probability
at most ε. More formally, one assumes that samples come
from an input domain X and that there is an unknown con-
cept c : X → {−1, 1} that we are trying to learn. The re-
alizable setting means that c belongs to a predefined concept
class C ⊆ X → {−1, 1} and that the correct label of any
x ∈ X is always c(x).

For the above learning task, a learning algorithm A
receives a training data set S of m i.i.d. samples
(x1, c(x1)), . . . , (xm, c(xm)) where each xi is drawn inde-
pendently from an unknown data distribution D over X . From

∗Original paper [Larsen, 2023] appeared at COLT’23.

this data set, the learning algorithm must output a hypothesis
hS : X → {−1, 1}. The algorithm A is a PAC learner, if for
any distribution D and any concept c ∈ C, it holds that if A
is given enough i.i.d. training samples S, then with probabil-
ity at least 1 − δ, the hypothesis hS that it outputs satisfies
LD(hS) = Prx∼D[h(x) ̸= c(x)] ≤ ε. We remark that the
algorithm A knows the concept class C, but not the data dis-
tribution D. Determining the minimum number of samples
M(ε, δ), as a function of ε, δ and the VC-dimension [Vapnik
and Chervonenkis, 1971] d of C (see Section 2 for a formal
definition of VC-dimension) needed for this learning task, is
one of the fundamental problems in PAC learning.

The most natural learning algorithm for the above is em-
pirical risk minimization (ERM). Here a learning algorithm
simply outputs an arbitrary hypothesis/concept hS ∈ C that
correctly predicts the labels of the training data, i.e. it has
hS(xi) = c(xi) for all (xi, c(xi)) ∈ S. Clearly such a hy-
pothesis exists since c ∈ C. Such a learning algorithm is re-
ferred to as a proper learner as it outputs a hypothesis/concept
from the concept class C. ERM is known to obtain a sample
complexity of O(ε−1(d lg(1/ε) + lg(1/δ))) [Vapnik, 1982;
Blumer et al., 1989]. Moreover, it can be shown that
this analysis cannot be tightened, i.e. there are distribu-
tions D and concept classes C where any proper learner
needs Ω(ε−1(d lg(1/ε) + lg(1/δ))) samples [Auer and Or-
tner, 2004]. However, a PAC learning algorithm is not nec-
essarily required to output a hypothesis h ∈ C. That bet-
ter strategies might exist may seem counter-intuitive at first,
since we are promised that the unknown concept c lies in C.
Nonetheless, the strongest known lower bounds for arbitrary
PAC learning algorithms only show that Ω(ε−1(d+lg(1/δ)))
samples are necessary [Blumer et al., 1989; Ehrenfeucht et
al., 1989]. This leaves a gap of a factor lg(1/ε) between ERM
and the lower bound for arbitrary algorithms.

Despite its centrality, closing this gap remained a big open
problem for more than thirty years. Finally, in 2016, Han-
neke [2016] built on ideas by Simon [2015] and presented an
algorithm with an asymptotically optimal sample complexity
of M(ε, δ) = O(ε−1(d + lg(1/δ))). His algorithm is based
on constructing a number of subsets Si ⊂ S of the training
data S with carefully designed overlaps between the Si’s (see
Section 2). He then runs ERM on each Si to obtain hypothe-
ses hSi

∈ C and finally outputs the hypothesis fS taking the
majority vote fS(x) = sign(

∑
i hSi

(x)) among the hSi
’s.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8411

While being a major theoretical breakthrough, Hanneke’s
algorithm has unfortunately not had any significant practi-
cal impact. One explanation is that it requires a rather large
number of sub-samples Si. Concretely, with optimal m =
Θ(ε−1(d + lg(1/δ))) samples, it requires mlg4 3 ≈ m0.79

sub-samples of linear size |Si| = Ω(m), resulting in a some-
what slow learning algorithm.
Our Contribution. In this work, we present an alterna-
tive optimal PAC learner in the realizable setting. Surpris-
ingly, our algorithm is not new, but actually pre-dates Han-
neke’s algorithm by twenty years. Concretely, we show that
the heuristic known as bagging (bootstrap aggregation) by
Breiman [1996], also gives an optimal PAC learner. Bagging,
and its slightly more involved extension known as random
forest [Breiman, 2001], have proved very efficient in prac-
tice and are classic topics in introduction to machine learning
courses.

In bagging, for t iterations, we sample a subset Si of n
independent and uniform samples with replacement from S.
We then run ERM on each Si to produce hypotheses hSi ∈ C
and finally output the hypothesis fS1,...,St taking the majority
vote fS1,...,St

(x) = sign(
∑

i hSi
(x)) among the hSi

’s. The
sub-samples Si are referred to as bootstrap samples.

While being similar to Hanneke’s algorithm, it is simpler
to construct the subsets Si, and also, we show that it suffices
with just t = O(lg(m/δ)) bootstrap samples of size n for
any 0.02m ≤ n ≤ m, which should be compared to Han-
neke’s algorithm requiring m0.79 subsets (where m is optimal
Θ(ε−1(d+lg(1/δ)))). For ease of notation, let Dc denote the
distribution of a pair (x, c(x)) with x ∼ D. Our result is then
formalized in the following theorem
Theorem 1. There is a universal constant a > 0 such that for
every 0 < δ < 1, every distribution D over an input domain
X , every concept class C ⊆ X → {−1, 1} of VC-dimension
d and every c ∈ C, if t ≥ 18 ln(2m/δ) and 0.02m ≤ n ≤ m,
then it holds with probability at least 1 − δ over the random
choice of a training set S ∼ Dm

c and t bootstrap samples
S1, . . . , St ⊂ S of size n, that the hypothesis fS1,...,St

pro-
duced by bagging satisfies

LD(fS1,...,St
) = Pr

x∼D
[fS1,...,St

(x) ̸= c(x)] ≤ a · d+ ln(1/δ)

m
.

Solving for m such that ε ≤ LD(g) gives a sample com-
plexity of O(ε−1(d+lg(1/δ)) as claimed. We remark that the
constants 18 and 0.02 can be reduced at the cost of increasing
the unspecified constant a.

In addition to providing an alternative and simpler algo-
rithm for optimal PAC learning, we also believe there is much
value in providing further theoretical justification for the wide
practical success of bagging.

In Section 2, we first present Hanneke’s optimal PAC
learner and highlight the main ideas in his analysis. We then
proceed to present a high-level overview of our proof of The-
orem 1, which re-uses some of the ideas from Hanneke’s
proof.

2 Proof Overview
In this section, we first present Hanneke’s PAC learning al-
gorithm and discuss the main ideas in his analysis. We then

Algorithm 1: Sub-Sample(U, V)
Input: Two sets of training samples U, V .
Result: Collection consisting of sub-samples.

1 if |U | < 4 then
2 return {U ∪ V }.
3 else
4 Partition U into 4 disjoint sets U0, U1, U2, U3 of

|U |/4 samples each.
5 return⋃3

i=1Sub-Sample(U0, V ∪ (
⋃

j∈{1,2,3}\{i} Uj)).

proceed to give a high-level overview of the keys ideas in
our proof that bagging is also an optimal PAC learning al-
gorithm. For completeness, we start by recalling the defini-
tion of Vapnik-Chervonenkis dimension [Vapnik and Chervo-
nenkis, 1971], or VC-dimension for short.

A concept class C ⊆ X → {−1, 1} has VC-dimension
d, where d is the largest integer such that there exists a set
of d samples x1, . . . , xd ∈ X for which any labeling of the
d samples can be realized by a concept c ∈ C. That is,
|{(c(x1), . . . , c(xd)) : c ∈ C}| = 2d. Throughout the pa-
per, we assume d ≥ 1 which is always true when C contains
at least two distinct concepts. Also, as the reader may have
observed, we consistently use bold face letters to denote ran-
dom variables.

Hanneke’s Algorithm and Analysis. As mentioned in
Section 1, Hanneke’s algorithm constructs a carefully se-
lected collection of sub-samples of the training set S. These
sub-samples are constructed by invoking Algorithm 1 as Sub-
Sample(S, ∅).

For simplicity, we have presented the Sub-Sample algo-
rithm assuming that m is a power of 4.

Since |U | is reduced by a factor 4 in each recursive call
and there are 3 such calls, we get that the total number of
sub-samples produced is 3lg4 m = mlg4 3 ≈ m0.79.

To analyse the hypothesis produced by invoking Sub-
Sample(S, ∅), running ERM on each produced sub-sample Si

to produce hypotheses hSi and taking a majority vote fS(x) =
sign(

∑
i hSi(x)), we zoom in on the recursive invocations of

Sub-Sample(U,V). Such an invocation produces a number of
sub-samples S1, . . . , St of U ∪ V ⊆ S. Letting hS1 , . . . , hSt

denote the hypotheses obtained by running ERM on these
sub-samples and f(U,V)(x) = sign(

∑
i hSi

(x)) the majority
vote among them, we prove by induction (with the base being
the leaves of the recursion) that with probability at least 1− δ
over U, it holds that LD(f(U,V)) ≤ a · (d + ln(1/δ))/|U| for
a universal constant a > 0. If we can complete this induc-
tive step, then the conclusion follows by examining the root
invocation Sub-Sample(S, ∅).

The base case in the inductive proof is simply when
a · (d + ln(1/δ))/|U| > 1. Here the conclusion follows
trivially as we always have LD(f(U,V)) ≤ 1. For the in-
ductive step, let f1,(U,V), f2,(U,V) and f3,(U,V) denote the
majority voters produced by the three recursive calls Sub-
Sample(U0,V ∪ U2 ∪ U3), Sub-Sample(U0,V ∪ U1 ∪ U3)
and Sub-Sample(U0,V ∪ U1 ∪ U2). Each of these have

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8412

LD(fi,(U,V)) ≤ a·(d+ln(1/δ))/|Ui| = 4a·(d+ln(1/δ))/|U|
by the induction hypothesis (except with some probability δ
which we ignore here for simplicity). For short, we say that
a hypothesis h errs on x if h(x) ̸= c(x). The crux of the
argument is now to show that it is very unlikely that fi,(U,V)

errs on a sample x ∼ D at the same time as a hypothesis hS′

trained on a sub-sample S′ produced by a recursive call j ̸= i
also errs on x.

For this step, let us wlog. consider the majority
vote f1,(U,V) (over hypotheses produced by ERM on Sub-
Sample(U0,V ∪ U2 ∪ U3)). Intuitively, if LD(f1,(U,V)) ≪
a·(d+ln(1/δ))/|U| then the hypotheses in f1,(U,V) contribute
little to LD(f(U,V)). So assume instead LD(f1,(U,V)) ≈
4a · (d + ln(1/δ))/|U|. Consider now some hypothesis hS′

obtained by running ERM on a sub-sample S′ produced by
the recursive call Sub-Sample(U0,V ∪ U1 ∪ U3). The key
observation and property of the Sub-Sample algorithm, is
that all hypotheses in the majority vote f1,(U,V) have been
trained on sub-samples that exclude all of U1. This means
that the samples U1 are independent of f1,(U,V). When
LD(f1,(U,V)) ≈ 4a · (d + ln(1/δ))/|U|, we will now see
about |U1|4a · (d + ln(1/δ))/|U| = a · (d + ln(1/δ)) sam-
ples (x, c(x)) in U1 for which f1,(U,V)(x) ̸= c(x). The ob-
servation is that, conditioned on f1,(U,V), these samples are
i.i.d. from the conditional distribution D(· | f1,(U,V) errs).
The second key observation is that hS′ is obtained by ERM
on a sub-sample S′ that includes all of U1 (we add U1 to
V in both of the other recursive calls). Moreover, since we
are in the realizable setting, we have hS′(x) = c(x) for ev-
ery x ∈ U1. In particular, this holds for all the samples
where f1,(U,V)(x) ̸= c(x). The classic sample complex-
ity bounds for proper PAC learning in the realizable setting
then implies that hS′ has LD(·|f1,(U,V) errs)(hS′) = O((d +

ln(1/δ))/(a · (d + ln(1/δ)))) ≤ 1/200 for a sufficiently
large. Note that this is under the conditional distribution
D(· | f1,(U,V) errs). That is, hS′ rarely errs when f1,(U,V) errs.
We thus get that Pr[f1,(U,V)(x) ̸= c(x) ∧ hS′(x) ̸= c(x)] =
Pr[f1,(U,V)(x) ̸= c(x)] · Pr[hS′(x) ̸= c(x) | f1,(U,V)(x) ̸=
c(x)] ≤ (a/50) · (d + ln(1/δ))/|U|. Since this holds for ev-
ery fi,(U,V) and hS′ from a recursive call j ̸= i, we can now
argue that LD(f(U,V)) ≪ a · (d + ln(1/δ))/|U|. To see this,
note first that for f(U,V) to err on an x ∈ X , it must be the case
that at least one fi,(U,V) also errs. Even in this case, since one
recursive call only contributes a third of the hypotheses in the
majority vote f(U,V), there must be many hypotheses hS′ (at
least a 1/2 − 1/3 = 1/6 fraction of all hypotheses) trained
from sub-samples S′ produced by the recursive calls j ̸= i
that also err on x. But we have just argued that it is very un-
likely that both fi,(U,V) and such an hS′ err at the same time.
Formalizing this intuition completes the inductive proof.

Bagging Analysis. We now turn to presenting the key ideas
in our proof of Theorem 1, i.e. that bagging is an optimal
PAC learner. Along the way, we also discuss the issues we
encounter towards establishing the result. Recall that in bag-
ging with a training set S ∼ Dm

c , we randomly sub-sample t
bootstrap samples S1, . . . , St ⊂ S each consisting of n i.i.d.
samples with replacement from S. We then run ERM on each

Si to produce hypotheses hS1
, . . . , hSt

and finally return the
majority vote fS1,...,St

(x) = sign(
∑

i hSi
(x)). It will be con-

venient for us to think of fS1,...,St
in a slightly different way.

Concretely, we instead let fS1,...,St
(x) = (1/t)

∑
i hSi

(x)
be a voting classifier. Then sign(fS1,...,St

(x)) ̸= c(x) if
and only if fS1,...,St

(x)c(x) ≤ 0. We thus seek to bound
LD(fS1,...,St

) = Prx∼D[fS1,...,St
(x)c(x) ≤ 0]. The motiva-

tion for thinking about fS1,...,St as a voting classifier, is that
it allows us to re-use some of the ideas that appear in proving
generalization bounds for AdaBoost [Freund and Schapire,
1997] and other voting classifiers.

We first observe that similarly to Hanneke’s sub-sampling,
if we look at just two hypotheses hSi

and hSj
with i ̸= j, then

hSi
is trained on a bootstrap sample Si leaving out a rather

large portion of S. Furthermore, hSj
will be trained on most

of these left-out samples and thus one could again argue that
it is unlikely that hSi

and hSj
err at the same time. Unfortu-

nately, this line of argument fails when we start combining a
non-constant number of hypotheses. In particular, with high
probability over the bootstrap samples, the union of any set of
ℓ bootstrap samples contains all but an exp(−Ω(ℓ))-fraction
of S. This leaves very few samples that are independent of the
hypotheses trained on such ℓ bootstrap samples. Trying to re-
peat Hanneke’s argument unfortunately requires Ω(m) inde-
pendent samples towards the last steps of an inductive proof.
In a nutshell, what saves Hanneke’s construction is that a third
all sub-samples together still leave out a quarter of the train-
ing data. For bagging, such a property is just not true if we
have more than a constant number of bootstrap samples.

Abandoning the hope of directly applying Hanneke’s line
of reasoning, we instead start by relating the performance of
bagging to that of a particular voting classifier that is deter-
ministically determined from a training set S, i.e. we get
rid of the bootstrap samples. To formalize this, we first in-
troduce some notation. From a training set S of m samples
(x1, c(x1)), . . . , (xm, c(xm)) and a vector of n not necessar-
ily distinct integers I = (i1, . . . , in) ∈ [m]n, let S(I) denote
the bootstrap sample (xi1 , c(xi1)), . . . , (xin , c(xin)). Then a
random bootstrap sample Si from S has the same distribu-
tion as if we draw I uniformly from [m]n and let Si = S(I).
Also, let hS(I) ∈ C denote the hypothesis resulting from
running ERM on S(I). Finally, for a list of t vectors B =

(I1, . . . , It) ∈ [m]n×t, we let fS,B = (1/t)
∑t

i=1 hS(Ii) de-
note the voting classifier produced by bagging with bootstrap
samples S(I1), . . . , S(It). Using the notation B ∼ [m]n×t to
denote a uniform random B from [m]n×t we thus have that
the hypothesis produced by bagging on S has the same distri-
bution as fS,B.

Now consider the following voting classifier

gS(x) :=
1

mn

∑
I∈[m]n

hS(I)(x).

That is, gS is the voting classifier averaging the predictions
over all mn possible bootstrap samples of S. Of course
one would never compute gS . Nonetheless, the performance
of the random fS,B with B ∼ [m]n×t is closely related to
that of gS . To see this, we introduce the notion of margins
which are typically used in the study of generalization of

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8413

voting classifiers, see e.g. the works [Bartlett et al., 1998;
Gao and Zhou, 2013; Larsen and Ritzert, 2022]. For a sam-
ple x ∈ X and voting classifier f(x) = (1/t)

∑t
i=1 hi(x),

we say that f has margin f(x)c(x) on the sample x. Since
each hi(x) is in {−1, 1}, we have the margin is a number
between −1 and 1. Intuitively, 1 represents that all the hy-
potheses hi agree on the label of x and those predictions are
correct. In general, a margin of γ implies that an α-fraction
of the hypotheses hi are correct, where α − (1 − α) =
γ ⇒ α = 1/2 + γ/2. For a margin 0 ≤ γ ≤ 1, de-
fine Lγ

D(f) = Prx∼D[f(x)c(x) ≤ γ]. That is, Lγ
D(f)

is the probability over a random sample x from D that f
has margin at most γ on x. We have LD(f) = L0

D(f).
With margins defined, we show that for every training set
S = {(xi, c(xi))}mi=1, if t = Ω(ln(m/δ)), then with prob-
ability 1− δ over B ∼ [m]n×t, we have

LD(fS,B) ≤ L1/3
D (gS) + 1/m. (1)

What this gives us, is that it suffices to understand how often
the voting classifier that averages over all possible bootstrap
samples has margin at most 1/3. To see why (1) is true, no-
tice that every hypothesis hS(Ii) in fS,B = (1/t)

∑t
i=1 hS(Ii)

is uniform random among the hypotheses averaged by gS .
Hence for any x ∈ X where gS has margin more than
1/3, we have EIi∼[m]n [hS(Ii)(x)c(x)] > 1/3. A Chernoff
bound and independence of the bootstrap samples implies
that PrB∼[m]n×t [fS,B(x)c(x) ≤ 0] ≤ exp(−Ω(t)) ≤ δ/m.
Using that this holds for every x with gS(x)c(x) > 1/3 es-
tablishes (1).

Our next step is to show that L1/3
D (gS) is small with high

probability over S ∼ Dm
c . For this, our key idea is to cre-

ate groups of bootstrap samples S(I) with I ∈ [m]n. These
groups have a structure similar to those produced by Han-
neke’s Sub-Sample procedure. We remark that these groups
are only for the sake of analysis and are not part of the bag-
ging algorithm.

For simplicity, let us for now assume that bagging pro-
duced samples without replacement instead of with replace-
ment. To indicate this, we slightly abuse notation and let(
m
n

)
denote all vectors I ∈ [m]n where all entries are dis-

tinct. Also, let us assume that n precisely equals the number
of samples in each sub-sample created by Hanneke’s Sub-
Sample (technically, this is n = m −

∑lg4 m−1
i=0 4i). For a

set S = (x1, c(x1)), . . . , (xm, c(xm)), let I denote the col-
lection of all vectors I ∈

(
m
n

)
such that S(I) is one of the sub-

samples produced by Sub-Sample(S, ∅). Note that I only de-
pends on m, not on S itself. We now define buckets Ci of vec-
tors I ∈

(
m
n

)
(i.e. of vectors corresponding to bootstrap sam-

ples). For every permutation π of the indices 1, . . . ,m, we
create a bucket Cπ . We add a vector I = (i1, . . . , in) ∈

(
m
n

)
to Cπ if and only if π(I) = (π(i1), . . . , π(in)) is in I.

With these buckets defined, we now make several cru-
cial observations. First, for any bucket Cπ , if S ∼ Dm

c ,
then the joint distribution of the bootstrap samples S(I) with
I ∈ Cπ is precisely the same as the joint distribution of the
sub-samples produced by Sub-Sample(S, ∅). This holds since
permuting the samples in S does not change their distribu-
tion. Hence for any bucket, Hanneke’s analysis shows that

the majority of hypotheses hS(I) with I ∈ Cπ rarely errs.
More precisely, if we let fS,π = (1/|Cπ|)

∑
I∈Cπ

hS(I) then
LD(fS,π) = O((d+ln(1/δ))/m) with probability 1− δ over
S. Here we need something slightly stronger, namely that
L5/6
D (fS,π) = O((d + ln(1/δ))/m). Assume for now that

this holds.
Next observe that if x ∈ X has gS(x)c(x) ≤ 1/3 for a

training set S, then at least one third of the hypotheses hS(I)

with I ∈
(
m
n

)
err on x, i.e. hS(I) for I uniform in

(
m
n

)
errs

on x with probability at least 1/3 (here we assume that gS
averages over hS(I) with I ∈

(
m
n

)
, i.e. sampling without re-

placement instead of with). Symmetry now implies that every
I ∈

(
m
n

)
is included in equally many buckets and all buckets

contain equally many vectors I . This observation implies that
the uniform I ∼

(
m
n

)
has the same distribution as if we first

sample a uniform random bucket C and then sample a uni-
form random I from C. But then if hS(I) errs on x with prob-
ability at least 1/3, it must be the case that a constant fraction
of the buckets Cπ have fS,π(x)c(x) ≤ 5/6. This intuitively
gives us that with high probability over S, L1/3

D (gS) can only
be a constant factor larger than L5/6

D (fS,π). But L5/6
D (fS,π) is

O((d + ln(1/δ))/m) with high probability, establishing the
same thing for L1/3

D (gS) as desired.
The above are the main ideas in the proof, though making

the steps completely formal requires some care, see the full
version [Larsen, 2023] for details.

3 Conclusion
In this work, we have shown that the classic bagging heuris-
tic is an optimal PAC learner in the realizable setting if we
sample just a logarithmic number of bootstrap samples.

Let us remark a small downside of bagging compared to
Hanneke’s algorithm. In his work, the number of sub-samples
is independent of δ, whereas our result for bagging requires
Ω(ln(m/δ)) sub-samples. Indeed, as bagging is a random-
ized algorithm, there will be some non-zero contribution to
the failure probability due to the number of sub-samples (with
some non-zero probability, all sub-samples are the same). We
find it an interesting open problem whether the analysis can
be tightened to yield a better dependency on δ in the number
of sub-samples needed.

Finally, let us comment on the unspecified constant a > 0
in Theorem 1. In our proof, we did not attempt to minimize a
and indeed it is rather ridiculous. With some care, one could
certainly shave several orders of magnitude, but at the end of
it, we still rely on Hanneke’s proof which also does not have
small constants. We believe that bagging actually provides
quite good constants, but this would require a different proof
strategy. At least our reduction to understanding L1/3

D (gS) is
very tight and incurs almost no loss in the constant a. A start-
ing point for improvements would be to find an alternative
proof that L1/3

D (gS) is small with high probability over S.

Acknowledgments
Supported by Independent Research Fund Denmark (DFF)
Sapere Aude Research Leader grant No 9064-00068B.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8414

References
[Auer and Ortner, 2004] Peter Auer and Ronald Ortner. A

new pac bound for intersection-closed concept classes. In
Learning Theory, pages 408–414. Springer Berlin Heidel-
berg, 2004.

[Bartlett et al., 1998] Peter Bartlett, Yoav Freund, Wee Sun
Lee, and Robert E. Schapire. Boosting the margin: a new
explanation for the effectiveness of voting methods. The
Annals of Statistics, 26(5):1651 – 1686, 1998.

[Blumer et al., 1989] Anselm Blumer, Andrzej Ehrenfeucht,
David Haussler, and Manfred K Warmuth. Learnability
and the vapnik-chervonenkis dimension. Journal of the
ACM (JACM), 36(4):929–965, 1989.

[Breiman, 1996] Leo Breiman. Bagging predictors. Machine
Learning, 24(2):123–140, 1996.

[Breiman, 2001] Leo Breiman. Random forests. Machine
Learning, 45(1):5–32, 2001.

[Ehrenfeucht et al., 1989] Andrzej Ehrenfeucht, David
Haussler, Michael Kearns, and Leslie Valiant. A general
lower bound on the number of examples needed for
learning. Information and Computation, 82(3):247–261,
1989.

[Freund and Schapire, 1997] Yoav Freund and Robert E
Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Com-
puter and System Sciences, 55(1):119–139, 1997.

[Gao and Zhou, 2013] Wei Gao and Zhi-Hua Zhou. On the
doubt about margin explanation of boosting. Artificial In-
telligence, 203:1–18, 2013.

[Hanneke, 2016] Steve Hanneke. The optimal sample com-
plexity of pac learning. The Journal of Machine Learning
Research, 17(1):1319–1333, 2016.

[Larsen and Ritzert, 2022] Kasper Green Larsen and Martin
Ritzert. Optimal weak to strong learning. Advances in
Neural Information Processing Systems, 2022. To appear.

[Larsen, 2023] Kasper Green Larsen. Bagging is an optimal
PAC learner. In COLT, volume 195 of Proceedings of Ma-
chine Learning Research, pages 450–468. PMLR, 2023.

[Simon, 2015] Hans U Simon. An almost optimal pac algo-
rithm. In Conference on Learning Theory, pages 1552–
1563. PMLR, 2015.

[Valiant, 1984] Leslie G Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134–1142, 1984.

[Vapnik and Chervonenkis, 1971] V. N. Vapnik and A. Ya.
Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Proba-
bility and its Applications, 16(2):264–280, 1971.

[Vapnik, 1982] Vladimir Vapnik. Estimation of Depen-
dences Based on Empirical Data: Springer Series in
Statistics (Springer Series in Statistics). Springer-Verlag,
Berlin, Heidelberg, 1982.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8415

	Introduction
	Proof Overview
	Conclusion

