
Capturing (Optimal) Relaxed Plans with
Stable and Supported Models of Logic Programs (Extended Abstract)∗

Masood Feyzbakhsh Rankooh and Tomi Janhunen
Tampere University, Tampere, Finland

{masood.feyzbakhshrankooh, tomi.janhunen}@tuni.fi

Abstract
We establish a novel relation between delete-free
planning, an important task for the AI Planning
community also known as relaxed planning, and
logic programming. We show that given a plan-
ning problem, all subsets of actions that could be
ordered to produce relaxed plans for the problem
can be bijectively captured with stable models of
a logic program describing the corresponding re-
laxed planning problem. We also consider the sup-
ported model semantics of logic programs, and in-
troduce one causal and one diagnostic encoding of
the relaxed planning problem as logic programs,
both capturing relaxed plans with their supported
models. Our experimental results show that these
new encodings can provide major performance gain
when computing optimal relaxed plans.

1 Introduction
AI Planning is the task of finding a sequence of actions, called
a plan, that when applied to a given initial state transforms it
to a state that satisfies all members of a given set of goal con-
ditions. According to the STRIPS formulation of AI Plan-
ning, states and goal conditions are represented by sets of
atomic propositions, and each action can have separate sets
of atomic propositions as its preconditions, positive effects,
and negative effects. Delete-free planning problems are those
for which actions have no negative effects. A given planning
problem can be relaxed into a delete-free problem, optimal
solving of which provides lower bound of the optimal cost of
the original problem. However, computing this lower bound,
denoted by h+, is NP-equivalent [Bylander, 1994]. Also, h+
is hard to approximate [Betz and Helmert, 2009].

Computing h+ in an efficient way is important for multi-
ple reasons. There have been many admissible heuristic func-
tions that approximate h+ in polynomial time by computing
lower bounds. Examples are the hmax heuristic [Bonet and
Geffner, 2001], LM-cut heuristic [Helmert and Domshlak,
2009], set-additive heuristic [Keyder and Geffner, 2008], and
cost-sharing approximations of hmax [Mirkis and Domshlak,

∗This is an extended abstract of [Rankooh and Janhunen, 2023]
that received the Best Paper Award of ICLP 2023.

2007]. The informativeness of these heuristic functions can-
not be evaluated unless we can compute the exact value of
h+. Also, efficient solving of relaxed planning problems is
in itself of importance, as there exist planning tasks of inter-
est for the AI community whose actions are all delete-free
[Gefen and Brafman, 2011; Robinson et al., 2014]. Another
reason for the importance of efficient optimal relaxed plan-
ning is that optimal plans for non-relaxed planning problems
can always be produced by iterative solving and reformulat-
ing relaxed planning tasks [Haslum, 2012].

Several approaches to solving relaxed planning problems
have previously been introduced. The approaches include
Boolean satisfiability (SAT) based encodings [Rankooh and
Rintanen, 2022b], integer programming based models [Imai
and Fukunaga, 2015; Rankooh and Rintanen, 2022a]; and
a minimum-cost hitting set based method introduced by
Haslum et al. [2012]. Here, we take an approach based on
the stable and supported models of logic programs [Gelfond
and Lifschitz, 1988; Marek and Subrahmanian, 1992]. Such
models provide the semantical basis for answer set program-
ming (ASP); see, e.g., [Brewka et al., 2011] for an overview.
The ASP paradigm offers rule-based general-purpose model-
ing languages for knowledge representation and reasoning.

Both stable and supported models implement a form of
minimality, i.e., atomic propositions are false by default. This
is highly useful in the context of AI planning since state pred-
icates are falsified in this sense and the encodings of planning
problems can concentrate on specifying which state predi-
cates become true or remain true inertially. This tends to lead
to more compact encodings compared to those based on pure
SAT and, furthermore, enable memory savings if native an-
swer set solvers are used for actual computations.

In this work, we give an encoding of relaxed planning prob-
lems in ASP. We show that all relaxed plans can be bijec-
tively captured with stable models of the produced logic pro-
gram. While the supported model semantics of logic pro-
grams cannot be directly employed for this purpose, we show
how by guaranteeing acyclicity in an underlying graph of the
logic program, one may deploy supported models to harvest
(optimal) relaxed plans of the planning problem. The logic
program produced in this way inherits the causal nature of
our stable model based encoding, in the sense that the di-
rection of explanations provided by the rules is from caus-
es/preconditions to effects. By reversing this direction, we

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8399

establish a diagnostic encoding, which while still using the
supported model semantics of logic programs, is shown to
be more efficient than our causal encoding by our empirical
study. Our experimental results show that our diagnostic sup-
ported model based encoding enables CLASP [Gebser et al.,
2015] to solve more problems compared to the integer pro-
gramming solver based state-of-the-art method.

2 Preliminaries
A STRIPS-style planning problem is a 5-tuple Π =
〈X, I,A,G, cost〉 where X is a finite set of Boolean state
variables, also called atomic propositions. The initial state I
and the set of goal conditions G are subsets of X . The finite
set A is the set of actions. Each member ~a of A is a triple
〈pre(~a), add(~a), del(~a)〉, where pre(~a), add(~a) and del(~a)
are sets of atomic propositions denoting the set of precondi-
tions, positive effects, and negative effects of ~a, which are
the atomic propositions that ~a requires, adds, and deletes, re-
spectively. The cost function cost maps members of A to
non-negative integers. We use the vector sign to distinguish
actions from the corresponding atoms that represent them in
logic programs.

States are represented as subsets of X . The successor s′ =
exec~a(s) of a state s with respect to action ~a ∈ A is defined if
pre(~a) ⊆ s, where the definition of s′ is (s\del(~a))∪add(~a).
An action sequence ~a1, ..., ~an is executable (in a state s)
if exec ~a1,..., ~an(s) = exec ~an(...exec ~a2(exec ~a1(s))...) is de-
fined. A plan for Π is a sequence π of actions from A such
that G ⊆ execπ(I). The cost of plan π = ~a1, ..., ~an for Π, is
defined by Σi=1,...,ncost(~ai). An optimal plan for Π is a plan
with minimal cost.

For a given STRIPS planning problem Π =
〈X, I,A,G, cost〉, the delete relaxation [Bonet and Geffner,
2001] is defined as Π+ = 〈X, I,A+, G, cost〉, where A+

is defined from A by replacing the set of negative effects
of each member of A with the empty set. Without loss of
generality, we can define Π+ = 〈X, ∅, A+, G, cost〉, with
an additional requirement that all members of I have been
removed from G, and also from the preconditions and effects
of members of A+.

A plan for Π+ is called a relaxed plan for the original
problem Π. The minimal cost of plans of Π+ is denoted by
h+(Π). If there is no relaxed plan for Π, we set h+(Π) to∞.

In order to translate planning problems to logic programs,
we consider logic programs that consist of rules of the forms:

a← b1 , . . . , bn, not c1 , . . . , not cm. (1)
{a} ← b1 , . . . , bn, not c1 , . . . , not cm. (2)

The symbols a, b1 , . . . , bn with n ≥ 0, and c1 , . . . , cm with
m ≥ 0 occurring in the rules are (propositional) atoms and
“not” denotes negation by default. Rules of the forms (1)
and (2) are known as normal and choice rules, respectively
[Simons et al., 2002]. Intuitively, each rule r gives a reason
to derive its head head(r) = a if the conditions in its body
body(r) are met, i.e., atoms involved can be either derived or
not by other rules. For a choice rule r of form (2), the deriva-
tion of head(r) is optional, enabling an exception to head(r)
being false by default. We write body+(r) and body−(r)

for the sets of atoms b1 , . . . , bn (resp. c1 , . . . , cm) occurring
positively (resp. negatively) in body(r). We say that r is a
positive rule if body−(r) is empty.

The signature of a logic program P , denoted by At(P), is
the set of atoms that occur in P . The positive dependency
graph of P is DG+(P) = 〈At(P),�〉 where a� b holds for
a, b ∈ At(P) if head(r) = a and b ∈ body+(r) for some
rule r ∈ P . If a � b, we say that a depends on b, and also
denote this by 〈a, b〉 ∈ DG+(P).

An interpretation I ⊆ At(P) determines which atoms a ∈
At(P) are true (a ∈ I) and which are false (a 6∈ I). Then
I satisfies a rule r ∈ P of form (1), denoted I |= r, if the
satisfaction of the body, denoted I |= body(r), implies that
head(r) ∈ I , i.e., I |= head(r). For a choice rule r of form
(2), I |= r unconditionally. Moreover, the interpretation I is
a (classical) model of P if I |= r holds for every r ∈ P . Each
positive normal program P has a unique least model LM(P)
obtained as the intersection

⋂
{I ⊆ At(P) | I |= P}.

Given an interpretation I , the reduct rI of r with respect
to I is obtained by partially evaluating the negative condi-
tions of r. For a normal rule (1), rI = ∅ if ci ∈ I for
some 1 ≤ i ≤ m and rI = {a ← b1 , . . . , bn} other-
wise. For a choice rule (2), the latter case additionally re-
quires that a ∈ I . Finally, for an entire logic program P ,
the reduct P I =

⋃
r∈P r

I and I is a stable model of P iff
I = LM(P I). We distinguish the supporting rules of P with
respect to I , denoted by SRP (I), which are the normal rules
whose bodies are satisfied, and the choice rules whose bodies
and heads are satisfied. A model I |= P is supported (by P)
when I = {head(r) | r ∈ SRP (I)}. Each stable model of P
is supported, but supported models are not necessarily stable,
such as I = {a} for P = {a← a.}.

3 Relaxed Plans Captured with Stable Models
of Logic Programs

Let Π = 〈X, I,A,G, cost〉 be a STRIPS planning problem,
Π+ = 〈X, ∅, A+, G, cost〉 be the delete relaxation of Π, and
P be a logic program consisting of rules of the form (1)
g ← not g for every g ∈ G; (2) {a} ← q1 , . . . , qn for
every ~a ∈ A with pre(~a) = {q1 , . . . , qn}; (3) p ← a for
every ~a ∈ A and p ∈ add(~a). Intuitively, the first rule guar-
antees all goal atoms to be true in a model. The second rule
explains the necessary conditions for the execution of an ac-
tion ~a. The third rule enforces the positive effects in case ~a
has been chosen to be in the model. We formally show that P
captures the relaxed plans of Π as its stable models.

Theorem 1. There is a bijection f(A′) =
⋃
~a∈A′(add(~a) ∪

{a}) between all subsets A′ of A+ which can be ordered to
produce a relaxed plan for Π, and all stable models of P .

Theorem 1 shows that if P is augmented with an optimiza-
tion constraint requiring minimization over the summation of
the costs of actions in the answer sets, the cost of an optimal
stable model of P is equal to h+(Π). The program P can be
seen as a causal encoding of relaxed plans of P . That is be-
cause the direction of relaxed plan computation in P is from
preconditions to actions, and from actions to effects. In other
words, the direction is from causes to effects.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8400

4 Relaxed Plans Captured with Supported
Models of Logic Pograms

In this section, we recall the instrumentation of logic pro-
grams with acyclicity constraint, which allows capturing the
stable models of a given logic program P with the supported
models of another program TrACYC(P) [Bomanson et al.,
2016]. We provide an adaptation of this method based on
the structure of program P explained above. We then review
the vertex elimination method, used previously for cycle pre-
vention in the produced models of SAT formulas [Rankooh
and Rintanen, 2022c; Rankooh and Janhunen, 2022]. We
next show how this method could also be used to translate
TrACYC(P) to new programs whose supported models rep-
resent stable models of P and relaxed plans of Π.

4.1 Instrumentation of Logic Programs with
Acyclicity Constraint

We adopt the acyclicity translation TrACYC(P) of a logic
program P [Bomanson et al., 2016] that deploys special de-
pendency atoms dep(x, y) to express the activation of the re-
spective arc 〈x, y〉 ∈ DG+(P) in the acyclicity constraint.
For the sake of the compactness of the output program, we
circumvent the introduction of dependency atoms for actions,
by establishing dependencies only between atoms of the orig-
inal planning problem. This way, the underlying graphs for
which acyclicity must be guaranteed become considerably
smaller than DG+(P).

The idea is to instrument P explained in the previous
section with additional rules that capture well-support for
atoms p ∈ X . For each pair 〈p, q〉, if there exists ~a ∈
A such that p ∈ add(a) and q ∈ pre(a), the poten-
tial dependency of p on q is expressed using a choice rule
{dep(p, q)} ← q. Also, atoms ws(a1, p) , . . . , ws(ak, p), for
actions {~a1 , . . . ,~ak} that add p enforce the well-support for
p in terms of k rules p ← ws(ai, p) for i = 1, ..., k. For
an atom p ∈ X , the rule (3) below captures the option that
the well-support for p is provided by some action ~a such that
pre(~a) = {q1 , . . . , qn} and p ∈ add(~a).

{ws(a, p)} ← dep(p, q1) , . . . , dep(p, qn). (3)

Also, the rule a ← ws(a, p) captures the atom a in the
supported models, in the case that it has been used to pro-
vide well-support for p. As in program P , we need a rule
g ← not g for every g ∈ G to guarantee that every goal
atom has been produced by some action.

For TrACYC(P) obtained in this way, the distinction be-
tween stable and supported models disappears if we insist on
acyclic models I for which the digraph induced by the set of
arcs {〈a, b〉 | dep(a, b) ∈ I} is acyclic. We deploy the fol-
lowing result:
Proposition 1 ([Bomanson et al., 2016]). If M is a stable
model of P , then TrACYC(P) has an acyclic supported model
N such that M = N ∩ At(P). If N is an acyclic supported
model of TrACYC(P), thenM = N∩At(P) is a stable model
of P .

Similarly to the stable model based encoding, TrACYC(P)
is a causal encoding, expressing the inference in the direction
from preconditions to actions, and from actions to effects.

4.2 Vertex Elimination Graphs
The concept of vertex elimination for digraphs was originally
introduced by Rose and Tarjan [1975]. Given a digraph G =
〈V,E〉, an ordering of V is a bijection α : {1, . . . , n} → V .
For a vertex v, the fill-in of v, denoted by F (v), is the set
of arcs from the in-neighbors of v to the out-neighbors of v,
formally defined by

F (v) = {〈x, y〉 | 〈x, v〉 ∈ E, 〈v, y〉 ∈ E, x 6= y}. (4)

The v-elimination graph of G is produced by removing v from
G, and adding the fill-in of v to the resulting graph. Formally,
G(v) = 〈V \ {v}, E(v) ∪ F (v)〉, where E(v) = {〈x, y〉 |
〈x, y〉 ∈ E, x 6= v, y 6= v}.

Given a digraph G and an ordering α of its vertices, the
elimination process of G according to α is the sequence G =
G0,G1, . . . ,Gn−1, where Gi is the α(i)-elimination graph of
Gi−1 for i = 1, . . . , n− 1.

The fill-in of the digraph G according to α, denoted by
Fα(G), is the set of all arcs added to G in the vertex elim-
ination process. Formally, Fα(G) is defined by (5), where
Fi−1(α(i)) is the fill-in of α(i) in Gi−1, with G0 = G:

Fα(G) =

|V |−1⋃
i=1

Fi−1(α(i)). (5)

The vertex elimination graph of G according to α, denoted
by G∗α, is the union of all graphs produced in the elimination
process of G according to α:

G∗α = 〈V,E ∪ Fα(G)〉. (6)

One important property of vertex elimination is that if the
original graph G has a directed cycle, then G∗α will have a
cycle of length 2, regardless of the ordering α.

4.3 The Causal Encoding
Consider TrACYC(P) explained above. Let G be the graph
of all dependencies of TrACYC(P). Formally, G = 〈X,E〉,
where E = {〈p, q〉 | dep(p, q) ∈ At(TrACYC(P))}. Also,
for each supported model M of TrACYC(P), let GM be the
graph of all dependencies in M , i.e., GM = 〈X,EM 〉, where
EM = {〈p, q〉 | dep(p, q) ∈M}. Assume that α is an order-
ing of the members of X , G = G0,G1, . . . ,Gn−1 is the elim-
ination process of G according to α, and for i = 1, . . . , n,
Fi−1(α(i)) is the fill-in of α(i) in Gi−1. Let G∗α = 〈X,E∗〉
and G∗M,α = 〈X,E∗M 〉 be the vertex elimination graphs of G
and GM according to α, respectively.

We produce the causal supported model semantics based
encoding of Π as logic program Pc by adding the following
rules to TrACYC(P). For every 〈p, q〉 ∈ Fi−1(α(i)), add

dep(p, q)← dep(p, α(i)), dep(α(i), q). (7)

Also, for every p and q such that 〈p, q〉 ∈ G∗α and 〈q, p〉 ∈ G∗α,
we add

f ← dep(p, q), dep(q, p), not f. (8)
Intuitively, for any vertex ordering α, and any supported

model M of TrACYC(P), the rule (7) extends M by atoms
representing the arcs in G∗M,α, the vertex elimination graph of
GM according to α, while the rule (8) guarantees that G∗M,α
has no cycle of length 2. We have the following result:

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8401

Theorem 2. There exists a permutation π of members of
A′ ⊆ A+ such that π is a relaxed plan for Π iff Pc has a
supported model M such that A′ = {~a ∈ A+ | a ∈M}.

4.4 The Diagnostic Encoding
Inferring causes from effects can be understood as diagnostic
inference [Russell and Norvig, 2020]. In our causal encod-
ing, we express the inference direction from preconditions to
dependencies, from dependencies to well-supports, and from
well-supports to effects. We can alternatively reverse all these
directions to produce a diagnostic encoding.

In our diagnostic encoding Pd, we assume that all atoms
could possibly be in the model by using the rule {p} for every
p ∈ X . However, if p is in the model, then it must have well-
support by at least one action. We establish this by adding
{ws(a, p)} ← p for every ~a ∈ A such that p ∈ add(~a),
and also f ← p, not ws(a1, p) , . . . , not ws(am, p), not f
for p ∈ X and all actions ~a1, ...,~am that could add p. To
represent the inference from well-supports to dependencies,
we add dep(p, q) ← ws(a, p) for ~a ∈ A, q ∈ pre(~a), and
p ∈ add(~a). Finally, to establish the inference direction from
dependencies to preconditions, we add q ← dep(p, q). As in
Pc, all rules in the forms of (7) and (8) must be included to
enforce acyclicity in the supported model. Moreover, we add
a ← ws(a, p) for ~a ∈ A and p ∈ add(~a), to enable an action
atom a to represent its cost in the minimization constraint,
and also g ← not g for every g ∈ G to guarantee that goal
atoms are included in the model.

It is quite easy to check that if Pd has a supported model
M , then M is also a supported model of Pc. On the other
hand, it can be shown in a straightforward manner that if N
is a supported model of Pc, then N \ L is a supported model
of Pd, where L is the set of atoms dep(p, q) for which there
is no action ~a such that ws(a, p) ∈ N and q ∈ pre(~a). Thus,
we have the following result:

Theorem 3. There exists a permutation π of members of
A′ ⊆ A+ such that π is a relaxed plan for Π iff Pd has a
supported model M such that A′ = {~a ∈ A+ | a ∈M}.

5 Empirical Results
We have implemented our encoding methods inside the HSP*
planner [Haslum, 2015]. The implementation is available un-
der the ASPTOOLS collection1. All experiments have been
run on a cluster of Linux machines with Intel Xeon 2.40 GHz
CPUs, using a timeout of 1800 seconds per problem, and a
memory limit of 8 GB. For our supported model based encod-
ings, where vertex elimination is used, for determining the or-
der of vertex elimination, we have implemented the minimum
degree heuristic, i.e., eliminating a vertex with a minimal total
number of incoming and outgoing arcs in the graph produced
after the elimination of previously eliminated vertices.

Our three implemented encodings are (1) our stable model
based encoding P ; (2) our causal supported model based en-
coding Pc; and (3) our diagnostic supported model based en-
coding Pd. As the solver we use CLASP 3.3.5, which is capa-
ble of optimizing over both stable and supported models. The

1https://github.com/asptools/software

10-1 100 101 102 103

Time (s)

400

600

800

1000

1200

1400

1600

1800

2000

P
ro

b
le

m
s

S
o
lv

e
d

P
d

IP

P
c

P

Figure 1: Cumulative numbers of problems solved by the competing
methods

CLASP solver searches for stable models by default. We en-
able the search for supported models only for our Pc and Pd
encodings. As the optimization strategy we use the unsatisfi-
able core (USC) method. Henceforth, we refer to the solver
obtained by combing CLASP with our P , Pc, and Pd encod-
ings simply by the name of the corresponding encoding.

To evaluate the efficiency of our methods, we have com-
pared them based on the total time of encoding and solving
with IP, the integer programming based encoding by Rankooh
and Rintanen [2022a], which uses IBM ILOG CPLEX Opti-
mization Studio 20.12 as the optimizer.

As benchmark problem sets, we use the STRIPS planning
problem sets of the planning repository3. In total, 2212 prob-
lem instances from 84 problem sets are used for comparison.

The cumulative number of problems solved by all methods
are presented in Figure 1. Our supported model based en-
codings significantly outperform the stable model based one,
with the diagnostic encoding performing visibly faster than
the causal one. Also, even though the number of problems
solved within 1800 seconds by our diagnostic encoding is not
much higher than that of IP, Pd solves problems considerably
faster than IP. In fact, regardless of the time limit, Pd solves
more problems compared to any other solver.

6 Conclusions
In this work, we study the previously uninvestigated appli-
cation of ASP solvers to optimal relaxed planning. Three
different encodings of relaxed planning problems into logic
programs are provided, one based on the stable model seman-
tics, and two based on the supported model semantics of logic
programs. According to our empirical results, all our encod-
ings enable CLASP to outperform the state-of-the-art method
if the time limit is small. Moreover, our diagnostic supported
model based method outperforms the state-of-the-art solver
on the studied benchmark problems regardless of the used
time limit.

2https://www.ibm.com/products/ilog-cplex-optimization-studio
3https://github.com/AI-Planning/classical-domains

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8402

Acknowledgements
Financial support from the Research Council of Finland
(Project XAILOG, #345633) is gratefully acknowledged.

References
[Betz and Helmert, 2009] Christoph Betz and Malte

Helmert. Planning with h + in theory and practice. In
Bärbel Mertsching, Marcus Hund, and Muhammad Zaheer
Aziz, editors, KI 2009: Advances in Artificial Intelligence,
32nd Annual German Conference on AI, Paderborn,
Germany, September 15-18, 2009. Proceedings, volume
5803 of Lecture Notes in Computer Science, pages 9–16.
Springer, 2009.

[Bomanson et al., 2016] Jori Bomanson, Martin Gebser,
Tomi Janhunen, Benjamin Kaufmann, and Torsten Schaub.
Answer set programming modulo acyclicity. Fundam. In-
formaticae, 147(1):63–91, 2016.

[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.
Planning as heuristic search. Artificial Intelligence, 129(1-
2):5–33, 2001.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artif. Intell.,
69(1-2):165–204, 1994.

[Gebser et al., 2015] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Javier Romero, and Torsten Schaub.
Progress in clasp series 3. In LPNMR 2015, pages 368–
383, 2015.

[Gefen and Brafman, 2011] Avitan Gefen and Ronen I. Braf-
man. The minimal seed set problem. In Fahiem Bacchus,
Carmel Domshlak, Stefan Edelkamp, and Malte Helmert,
editors, Proceedings of the 21st International Conference
on Automated Planning and Scheduling, ICAPS 2011,
Freiburg, Germany June 11-16, 2011. AAAI, 2011.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP’88, pages
1070–1080, 1988.

[Haslum et al., 2012] Patrik Haslum, John K. Slaney, and
Sylvie Thiébaux. Minimal landmarks for optimal delete-
free planning. In Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2012, pages 353–357. AAAI Press, 2012.

[Haslum, 2012] Patrik Haslum. Incremental lower bounds
for additive cost planning problems. In Lee McCluskey,
Brian Charles Williams, José Reinaldo Silva, and Blai
Bonet, editors, Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19,
2012. AAAI, 2012.

[Haslum, 2015] Patrik Haslum. Hsp* code and documen-
tation http://users.cecs.anu.edu.au/patrik/un-hsps.html.,
2015.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Alfonso Gerevini,
Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis, ed-
itors, Proceedings of the 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009, Thes-
saloniki, Greece, September 19-23, 2009. AAAI, 2009.

[Imai and Fukunaga, 2015] Tatsuya Imai and Alex Fuku-
naga. On a practical, integer-linear programming model
for delete-free tasks and its use as a heuristic for cost-
optimal planning. Journal of Artificial Intelligence Re-
search, 54:631–677, 2015.

[Keyder and Geffner, 2008] Emil Keyder and Hector
Geffner. Heuristics for planning with action costs re-
visited. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis, and Nikolaos M. Avouris, editors, ECAI
2008 - 18th European Conference on Artificial Intelli-
gence, Patras, Greece, July 21-25, 2008, Proceedings,
volume 178 of Frontiers in Artificial Intelligence and
Applications, pages 588–592. IOS Press, 2008.

[Marek and Subrahmanian, 1992] Victor Witold Marek and
Venkatramanan Siva Subrahmanian. The relationship be-
tween stable, supported, default and autoepistemic seman-
tics for general logic programs. Theor. Comput. Sci.,
103(2):365–386, 1992.

[Mirkis and Domshlak, 2007] Vitaly Mirkis and Carmel
Domshlak. Cost-sharing approximations for h+. In
Mark S. Boddy, Maria Fox, and Sylvie Thiébaux, edi-
tors, Proceedings of the Seventeenth International Con-
ference on Automated Planning and Scheduling, ICAPS
2007, Providence, Rhode Island, USA, September 22-26,
2007, pages 240–247. AAAI, 2007.

[Rankooh and Janhunen, 2022] Masood Feyzbakhsh
Rankooh and Tomi Janhunen. Efficient computation
of answer sets via SAT modulo acyclicity and vertex elim-
ination. In Georg Gottlob, Daniela Inclezan, and Marco
Maratea, editors, Logic Programming and Nonmonotonic
Reasoning - 16th International Conference, LPNMR
2022, Genova, Italy, September 5-9, 2022, Proceedings,
volume 13416 of Lecture Notes in Computer Science,
pages 203–216. Springer, 2022.

[Rankooh and Janhunen, 2023] Masood Feyzbakhsh
Rankooh and Tomi Janhunen. Capturing (optimal)
relaxed plans with stable and supported models of logic
programs. Theory Pract. Log. Program., 23(4):1–15,
2023.

[Rankooh and Rintanen, 2022a] Masood Feyzbakhsh
Rankooh and Jussi Rintanen. Efficient computation and
informative estimation of h+ by integer and linear pro-
gramming. In Akshat Kumar, Sylvie Thiébaux, Pradeep
Varakantham, and William Yeoh, editors, Proceedings
of the Thirty-Second International Conference on Auto-
mated Planning and Scheduling, ICAPS 2022, Singapore
(virtual), June 13-24, 2022, pages 71–79. AAAI Press,
2022.

[Rankooh and Rintanen, 2022b] Masood Feyzbakhsh
Rankooh and Jussi Rintanen. Efficient encoding of cost

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8403

optimal delete-free planning as SAT. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Virtual
Event, February 22 - March 1, 2022, pages 9910–9917.
AAAI Press, 2022.

[Rankooh and Rintanen, 2022c] Masood Feyzbakhsh
Rankooh and Jussi Rintanen. Propositional encodings of
acyclicity and reachability by using vertex elimination. In
Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, 2022 Virtual Event, February 22 - March 1,
2022, pages 5861–5868. AAAI Press, 2022.

[Robinson et al., 2014] Nathan Robinson, Sheila A. McIl-
raith, and David Toman. Cost-based query optimization
via AI planning. In Carla E. Brodley and Peter Stone, ed-
itors, Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada, pages 2344–2351. AAAI Press, 2014.

[Rose and Tarjan, 1975] Donald J. Rose and Robert Endre
Tarjan. Algorithmic aspects of vertex elimination. In Pro-
ceedings of the 7th Annual ACM Symposium on Theory of
Computing, pages 245–254, 1975.

[Russell and Norvig, 2020] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach (4th Edition).
Pearson, 2020.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and
Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–
234, 2002.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Sister Conferences Best Papers Track

8404

	Introduction
	Preliminaries
	Relaxed Plans Captured with Stable Models of Logic Programs
	Relaxed Plans Captured with Supported Models of Logic Pograms
	Instrumentation of Logic Programs with Acyclicity Constraint
	Vertex Elimination Graphs
	The Causal Encoding
	The Diagnostic Encoding

	Empirical Results
	Conclusions

