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Abstract
Input/Output (I/O) logic is a general framework for
reasoning about conditional norms and/or causal
relations. We streamline Bochman’s causal I/O
logics and their original version via proof-search-
oriented sequent calculi. As a byproduct, we obtain
new, simple semantics for all these logics, com-
plexity bounds, embeddings into normal modal log-
ics, and efficient deduction methods. Our work en-
compasses many scattered results and provides uni-
form solutions to various unresolved problems.

1 Introduction
Input/Output (I/O) logic is a general framework proposed
by [Makinson and van der Torre, 2000] to reason about con-
ditional norms. I/O logic is not a single logic but rather
a family of logics, each viewed as a “transformation en-
gine”, which converts an input (condition under which the
obligation holds) into an output (what is obligatory under
these conditions). Many different I/O logics have been de-
fined, e.g., [Makinson and van der Torre, 2001; van der
Torre and Parent, 2013; Parent and van der Torre, 2014;
Stolpe, 2015], and also used as building blocks for causal rea-
soning [Bochman, 2003; Bochman, 2004; Bochman and Lif-
schitz, 2015; Bochman, 2021], laying down the logical foun-
dations for the causal calculus [McCain and Turner, 1997],
and for legal reasoning [Ciabattoni et al., 2021]. I/O log-
ics manipulate Input-Output pairs (A,B), which consist of
boolean formulae representing either conditional obligations
(for the original I/O logics) or causal relations (A causes B,
for their causal counterparts). Different I/O logics are defined
by varying the mechanisms of obtaining new pairs from a set
of pairs (entailment problem). The semantics of the original
I/O logics is procedural, while their causal counterparts adopt
bimodels, which are pairs of arbitrary deductively closed sets
of formulae. Each I/O logic possesses a proof calculus, con-
sisting of axioms and rules but not suitable for proof search.

This paper deals with the four original I/O logics OUT1-
OUT4 in [Makinson and van der Torre, 2000] and their causal

*This is the extended abstract of the paper with the same title
[Ciabattoni and Rozplokhas, 2023] presented at KR 2023, where it
received the Ray Reiter Best Paper Prize.

counterpart OUT⊥
1 -OUT⊥

4 in [Bochman, 2004]. We intro-
duce proof-search-oriented sequent calculi and use them to
bring together scattered results and to provide uniform solu-
tions to various unresolved problems. Indeed [van Berkel and
Straßer, 2022] characterized many I/O logics through an ar-
gumentative approach using sequent-style calculi. Their cal-
culi are not proof search-oriented. First sequent calculi of
this kind for some I/O logics, including OUT1 and OUT3,
have been proposed in [Lellmann, 2021]. Their implemen-
tation offers an alternative decidability proof, though subop-
timal (entailment is shown to be in ΠP

3 ), and the problem
of finding proof-search-oriented calculi for OUT2 and OUT4

was left open there. A prover for these two logics was intro-
duced in [Benzmüller et al., 2019]. The prover encodes in
classical Higher Order Logic their embeddings from [Makin-
son and van der Torre, 2000] into the normal modal logics K
and KT. Finding an embedding of OUT1 and OUT3 into nor-
mal modal logics was left as an open problem, that [van der
Torre and Parent, 2013] indicates as difficult, if possible at
all. An encoding of various I/O logics into more complicated
logics (adaptive modal logics) is in [Straßer et al., 2016]. Us-
ing their procedural semantics, [Steen, 2021] defined goal-
directed decision procedures for the original I/O logics, with-
out mentioning the complexity of the task. [Sun and Robaldo,
2017] showed that the entailment problem for OUT1, OUT2,
and OUT4 is co-NP-complete, while for OUT3 complexity
was found to be between classes co-NP and PNP, though not
precisely resolved.

In this paper, we follow a new path that streamlines the
considered logics (see [Ciabattoni and Rozplokhas, 2023] for
all proofs). Inspired by the modal embedding of OUT⊥

2 and
OUT⊥

4 in [Bochman, 2003], we design well-behaving se-
quent calculi for Bochman’s causal I/O logics. The normal
form of derivations in these calculi establishes a simple syn-
tactic link between derivability in the original I/O logics and
in their causal versions, enabling the use of our calculi for
the original I/O logics as well. As a by-product, the follow-
ing results are achieved uniformly across all four original I/O
logics and their causal versions:

• a simple possible worlds semantics
• co-NP-completeness and efficient automated procedures

for the entailment problem
• embeddings into the shallow fragment of the modal log-

ics K, KD, and their extension with axiom F.
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Logic (TOP) (BOT) (WO) (SI) (AND) (OR) (CT)
OUT1 ✓ ✓ ✓ ✓
OUT2 ✓ ✓ ✓ ✓ ✓
OUT3 ✓ ✓ ✓ ✓ ✓
OUT4 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

1 ✓ ✓ ✓ ✓ ✓
OUT⊥

2 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

3 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Defining rules for the considered I/O logics

2 Preliminaries
In the I/O logic framework, conditional norms (or causal rela-
tions) are expressed as pairs (B, Y ) of propositional boolean
formulae. Different I/O logics are obtained by varying the
mechanisms of obtaining new input-output pairs from a given
set of these pairs. The mechanisms introduced in the original
paper [Makinson and van der Torre, 2000] are based on the
following (axioms and) rules (|= denotes semantic entailment
in classical propositional logic):

(TOP) (⊤,⊤) is derivable from no premises

(BOT) (⊥,⊥) is derivable from no premises

(WO) (A,X) derives (A, Y ) whenever X |= Y

(SI) (A,X) derives (B,X) whenever B |= A

(AND) (A,X1) and (A,X2) derive (A,X1 ∧X2)

(OR) (A1, X) and (A2, X) derive (A1 ∨A2, X)

(CT) (A,X) and (A ∧X,Y ) derive (A, Y )

Different I/O logics are given by different subsets R of
these rules, see Fig. 1. The basic system, called simple-
minded output OUT1, consists of the rules {(TOP), (WO),
(SI), (AND)}. Its extension with (OR) (for reasoning by
cases) leads to basic output logic OUT2, with (CT) (for
reusability of outputs as inputs in derivations) to simple-
minded reusable output logic OUT3, and with both (OR)
and (CT) to basic reusable output logic OUT4. Their causal
counterpart [Bochman, 2004], that we denote by OUT⊥

i for
i = 1, . . . , 4, extends the corresponding logics with (BOT).

Definition 1. Given a set of pairs G and a set R of rules, a
derivation in an I/O logic of a pair (B, Y ) from G is a tree
with (B, Y ) at the root, each non-leaf node derivable from
its immediate parents by one of the rules in R, and each leaf
node is an element of G or an axiom from R.

G ⊢OUT∗ (B, Y ) indicates that (B, Y ) is derivable in the
I/O logic OUT∗ from the set of pairs in G (entailment prob-
lem). (B, Y ) is the goal pair, the formulae B and Y are the
goal input and goal output respectively, and the pairs in G are
called deriving pairs.

3 Sequent Calculi for I/O Logics
We define sequent calculi for all four causal I/O logic in a
modular fashion. The characterization of their derivations al-
lows us to establish a syntactic link between causal and origi-
nal I/O logics, thereby enabling the utilization of these calculi
for the original I/O logics as well.

B ⇒ (IN)
G ⊢ (B, Y )

⇒ Y (OUT)
G ⊢ (B, Y )

Figure 1: Concluding rules (same for all causal I/O logic)

The basic objects of the calculi for the causal I/O logic are

I/O sequents (A1, X1), . . . , (An, Xn) ⊢ (B, Y )

dealing with pairs, as well as

Genzen’s LK sequents A1, . . . An ⇒ B1, . . . , Bm

dealing with boolean formulae (meaning that {A1, . . . , An}
|= (B1 ∨ · · · ∨ Bm)). The calculi are defined by extending
Gentzen’s sequent calculus LK for classical logic [Gentzen,
1935] with three rules manipulating I/O sequents: two con-
cluding rules (see Fig. 1) that transform the derivation of the
goal pair into an LK derivation of either the goal input or the
goal output, and one elimination rule — different for each
logic — that removes one of the deriving pair while modify-
ing the goal pair (Fig. 2).
Definition 2. A derivation in our calculi is a finite la-
beled tree whose internal nodes are I/O or LK sequents
s.t. the label of each node follows from the labels of its
children using the calculus rules. We say that an I/O se-
quent (A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable if all
the leaves of its derivation are LK axioms.

Derivations of I/O sequents consists of two parts. Starting
from the bottom, we first encounter rules dealing with pairs
(pair elimination and concluding rules) followed by LK rules.

It is easy to see that using (IN) and (OUT) we can derive
(TOP) and (BOT); their soundness in the weakest causal I/O
logic OUT⊥

1 is expressed by the following result
Lemma 1. (IN) and (OUT) are derivable in OUT⊥

1 .

We present below the calculi for each causal I/O logic.

Production Inference OUT⊥
1 . The calculus SC⊥

1 for
OUT⊥

1 is obtained by adding to the core calculus (consisting
of LK with the rules (IN) and (OUT )) the pair elimination
rule (E1) in Fig. 2.
Notation 1. P(X) will denote the set of all partitions of the
set X , i.e., P(X) = {(I, J) | I ∪ J = X, I ∩ J = ∅}

The following lemma provides a useful character-
ization of derivability in SC⊥

1 of an I/O sequent
(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) via the derivability of
certain sequents in LK. The intuition behind it is that
the characterization considers all possible ways to ap-
ply the rule (E1), by partitioning the premises of
(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) into two disjoint sets (I of
remaining deriving pairs and J of eliminated pairs).

Lemma 2 (Characterization lemma for SC⊥
1 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
1

iff for all partitions (I, J) ∈ P({1, . . . , n}), at least one of
the following holds:

• B ⇒ Ai is derivable in LK for some i ∈ I ,

• B ⇒ is derivable in LK,

• {Xj}j∈J ⇒ Y is derivable in LK.
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Basic Production Inference OUT⊥
2 . The calculus SC⊥

2
for OUT⊥

2 is obtained by adding to the core calculus (con-
sisting of LK with the rules (IN) and (OUT )) the pair elim-
ination rule (E2) in Fig. 2.

Notice that if a concluding rule (IN) or (OUT) can be ap-
plied to the conclusion of (E2), it can also be applied to its
premises. This observation implies that if (A1, X1), . . . ,

(An, Xn) ⊢ (B, Y ) is derivable in SC⊥
2 there is a deriva-

tion in which the concluding rules are applied only when all
deriving pairs are eliminated. We use this I/O normal form of
derivations in the proof of the following lemma.

Lemma 3 (Characterization lemma for SC⊥
2 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
2

iff for all partitions (I, J) ∈ P({1, . . . , n}), either
B ⇒ {Ai}i∈I or {Xj}j∈J ⇒ Y is derivable in LK.

Regular Production Inference OUT⊥
3 . The calculus SC⊥

3
for OUT⊥

3 consists of LK with (IN) and (OUT ) extended
with the pair elimination rule and (E3) in Fig. 2.

Lemma 4 (Characterization lemma for SC⊥
3 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
3

iff for all (I, J) ∈ P({1, . . . , n}), one of the following holds:

• B, {Xj}j∈J ⇒ Ai is derivable in LK for some i ∈ I ,

• B, {Xj}j∈J ⇒ is derivable in LK,

• {Xj}j∈J ⇒ Y is derivable in LK.

Causal Production Inference OUT⊥
4 . The calculus SC⊥

4
consists of LK with the the rules (IN) and (OUT ), extended
with the pair elimination rule (E4) in Fig. 2.

Inspired by the normal modal logic embedding of OUT⊥
4

in [Bochman, 2003], the shape of the rule (E4) requires to
amend the statement of the characterization lemma (w.r.t.
Lemma 3).

Lemma 5 (Characterization lemma for SC⊥
4 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
4 iff for

all (I, J) ∈ P({1, . . . , n}), either B, {Xj}j∈J ⇒ {Ai}i∈I

or {Xj}j∈J ⇒ Y is derivable in LK.

Causal I/O Logics vs. Original I/O Logics. We establish
the following syntactic correspondence between derivability
in original and causal I/O logics.

Theorem 1. (A1, X1), . . . , (An, Xn) ⊢OUTk
(B, Y )

iff (A1, X1), . . . , (An, Xn) ⊢OUT⊥
k

(B, Y ) and
X1, . . . , Xn |= Y in classical logic, for each k = 1, . . . , 4.

The above theorem enables us to use the calculi developed
for the causal I/O logics also for OUT1 − OUT4.

4 Applications
Our calculi are used to uniformly establish the following re-
sults for the eight considered logics: possible worlds seman-
tics, co-NP-completeness and automated deduction methods,
and new embeddings into normal modal logics.

Logic Frame condition Notion of validity
OUT1 no conditions 1-2-validity
OUT2 |In| ≤ 1 1-2-validity
OUT3 no conditions 3-4-validity
OUT4 |In| ≤ 1 3-4-validity
OUT⊥

1 |In| ≥ 1 1-2-validity
OUT⊥

2 |In| = 1 1-2-validity
OUT⊥

3 |In| ≥ 1 3-4-validity
OUT⊥

4 |In| = 1 3-4-validity

Table 2: Conditions on I/O models (size of the set In of input worlds)
and corresponding notions of validity for I/O models.

4.1 Possible Worlds Semantics

We design the semantics by looking at the countermodels
provided by the characterization lemmas. A contraposi-
tive reading of these lemmas leads indeed to countermod-
els for non-derivable statements in all considered causal I/O
logics. These countermodels consist of (a partition and)
several boolean interpretations (two for OUT⊥

2 , OUT⊥
4 and

their causal versions, and (n + 2) for OUT⊥
1 , OUT⊥

3 and
their causal versions) that falsify the LK sequents from the
respective lemma statement. A suitable generalization of
these countermodels provides alternative semantic character-
izations for both the original and the causal I/O logics.

Definition 3. An I/O model is a pair (In, out) where out is
the output world, and In is a set of input worlds.

Definition 4. An I/O pair (A,X) is 1-2-valid in an I/O model
(In, out) if (∀in ∈ In. in ⊨ A) implies out ⊨ X . An I/O pair
(A,X) is 3-4-valid in an I/O model (In, out) if (∀in ∈ In. in ⊨
A) implies (∀w ∈ {out} ∪ In. w ⊨ X).

Proposition 1 (Semantics of I/O models). G ⊢OUTk
(B, Y )

(resp. G ⊢OUT⊥
k
(B, Y )) iff for all I/O models (satisfying the

corresponding conditions in Tab. 2) the validity of all pairs in
G implies the validity of (B, Y ).

Let us see our semantics at work in the normative context.

Example 1. Consider the normative code, inspired by the EU
General Data Protection Regulation, comprising the condi-
tional obligations (⊤,Lawful), (¬Lawful,Erase), and
(Lawful,¬Erase), where Lawful represents lawful data
processing and Erase data erasure. Assume that ¬Lawful
holds. The question asked in [Benzmüller et al., 2019] is
whether some unethical obligation (like KillBoss) can be
derived in OUT1 and OUT2 due to the potentially contradic-
tory obligations. A countermodel (In, out) to this entailment
problem should be s.t. (a) all input worlds satisfy ¬Lawful,
(b) out does not satisfy KillBoss and (c) for every condi-
tional obligation (A,X) in the norm base either out satisfies
X or there is an input world that does not satisfy A. We take
out and In satisfying {¬KillBoss,Lawful,Erase} and
¬Lawful, respectively. Intuitively out is an ‘ideal’ world as
it satisfies all conditional obligations triggered in the given
situation (and in which KillBoss does not happen), while
In describes a case consistent with the given situation which
explains why (Lawful,¬Erase) is not triggered.
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G ⊢ (B ∧ ¬A, Y ) G ⊢ (B, Y ∨ ¬X)
(E2)

(A,X), G ⊢ (B, Y )

B ⇒ A G ⊢ (B, Y ∨ ¬X)
(E1)

(A,X), G ⊢ (B, Y )

G ⊢ (B ∧ ¬A, Y ) G ⊢ (B ∧X,Y ∨ ¬X)
(E4)

(A,X), G ⊢ (B, Y )

B ⇒ A G ⊢ (B ∧X,Y ∨ ¬X)
(E3)

(A,X), G ⊢ (B, Y )

Figure 2: Sequent rules for pair elimination (one for each considered causal I/O logic)

4.2 Complexity and Automated Deduction
An immediate corollary of our results is co-NP-completeness
for all of the considered logics. Moreover, we can explic-
itly reduce the entailment problem in all of them to the
(un-)satisfiability of one classical propositional formula of
polynomial size, a thoroughly studied problem with a rich
variety of efficient tools available. The result is as follows

Lemma 6. (A1, X1), . . . , (An, Xn) ⊢OUT⊥
k
(B, Y ) iff the

classical propositional formula below is unsatisfiable
¬Pk

n((B, Y )) ∧
∧

(A,X)∈G

Pk
n((A,X)), where

• Pk
n((A,X)) = (

Nk∧
l=1

Al) → X0 for k = 1, 2

• Pk
n((A,X)) = (

Nk∧
l=1

Al) → (
Nk∧
l=0

X l) for k = 3, 4

The result is extended to the original I/O logics via Th. 1.

4.3 Embeddings into Normal Modal Logics
As a corollary of the soundness and completeness of I/O log-
ics w.r.t. I/O models we provide uniform embeddings into
normal modal logics.

More precisely we show that G ⊢ (B, Y ) in I/O logics iff a
certain sequent consisting of shallow formulae only (meaning
that the formulae do not contain nested modalities) is valid
in suitable normal modal logics. To do that we establish a
correspondence between pairs and shallow formulae.

The I/O models already use the terminology of Kripke se-
mantics that define normal modal logic. To establish a pre-
cise link between the two semantics we need only to de-
fine the accessibility relation on worlds. We will treat the
set of input worlds In as the set of worlds accessible from
the output world out. Under this view on input worlds,
1-2-validity (resp. 3-4-validity) of the pair (A,X) is equiv-
alent to the truth of the modal formula □A → X (resp.
□A → X ∧□X) in the world out.

Also, the conditions on the number of input worlds that are
used in Prop. 1 to distinguish different I/O logics can be ex-
pressed in normal modal logics by standard Hilbert axioms.
Specifically, axiom D : □A → ♢A forces Kripke models
to have at least one accessible world, while F : ♢A → □A
forces them to have at most one accessible world. As shown
below, the embedding works for the basic modal logic K ex-
tended with D (which results in the well-known standard de-
ontic logic [von Wright, 1951] KD), with F, or both axioms.

Below we abbreviate validity e.g. in the logics K (respec-
tively K+ F) with |=K/K+F.

Theorem 2. (B, Y ) is derivable from pairs G in
• OUT1 and OUT2 iff G□

1/2 |=K/K+F □B → Y

• OUT3 and OUT4 iff G□
3/4 |=K/K+F □B → Y ∧□Y

• OUT⊥
1 and OUT⊥

2 iff G□
1/2 |=KD/KD+F □B → Y

• OUT⊥
3 and OUT⊥

4 iff G□
3/4 |=KD/KD+F □B→Y ∧□Y

where G□
1/2 = {□Ai → Xi | (Ai, Xi) ∈ G},

and G□
3/4 = {□Ai → Xi ∧□Xi | (Ai, Xi) ∈ G}.

5 Conclusions
We have introduced sequent calculi for I/O logics. Our cal-
culi provide a natural syntactic connection between deriv-
ability in the four original I/O logic [Makinson and van der
Torre, 2000] and in their causal version [Bochman, 2004].
Moreover, the calculi yield natural possible worlds semantics,
complexity bounds, embeddings into normal modal logics, as
well as efficient deduction methods. It is worth noticing that
our methods for the entailment problem offer derivability cer-
tificates (i.e., derivations) or counter-models as solutions. The
efficient discovery of the latter can be accomplished using
SAT solvers, along the line of [Lahav and Zohar, 2014].

Our work encompasses many scattered results and presents
uniform solutions to various unresolved problems; among
them, it contains first proof-search oriented calculi for OUT⊥

2
and OUT⊥

4 ; it provides a missing direct formal connection be-
tween the semantics of the original and the causal I/O logics;
it introduces a uniform embedding into normal modal logics,
that also applies to OUT1 and OUT3, despite the absence in
these logics of the (OR) rule; moreover, it settles the com-
plexity of the logics OUT3 and OUT⊥

3 . The latter logic has
been used in [Bochman, 2018] as the base for actual causality
and in [Bochman, 2004], together with OUT⊥

4 , to character-
ize strong equivalence of causal theories w.r.t. two different
non-monotonic semantics. Furthermore OUT4 has been used
in [Ciabattoni et al., 2021] as a base for formalizing Kelsen’s
theory of norms [Kelsen, 1991]. The automated deduction
tools we have provided might be used also in these contexts.

In this paper, we have focused on monotonic I/O logics.
However, due to their limitations in addressing different as-
pects of causal reasoning [Bochman, 2021] and of normative
reasoning, several non-monotonic extensions have been intro-
duced. For example [Makinson and van der Torre, 2001; Par-
ent and van der Torre, 2014] have proposed non-monotonic
extensions that have also been applied to represent and reason
about legal knowledge bases, as demonstrated in the work by
Robaldo et al. [Robaldo et al., 2020]. Our new perspective
on the monotonic I/O logics contributes to increase their un-
derstanding and can provide a solid foundation for exploring
non-monotonic extensions.
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