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Abstract

Several efforts that leverage the tools of formal on-
tology have demonstrated the fruitfulness of con-
sidering key metaproperties of classes in ontol-
ogy engineering. Despite that, it is still a com-
mon practice to apply representation schemes and
approaches–such as OWL–that do not benefit from
identifying ontological categories and simply treat
all classes in the same manner. In the original study,
we proposed an approach to support the automated
classification of classes into the ontological cate-
gories underlying the (g)UFO foundational ontol-
ogy. We proposed a set of inference rules derived
from (g)UFO’s axiomatization that, given an ini-
tial classification of the classes in an OWL ontol-
ogy, supports the inference of the classification for
the remaining classes in the ontology. We formal-
ized these rules, implemented them in a tool, and
assessed them against a catalog of ontologies.

1 Introduction
Ontologies have been promoted both as a reference model
of consensus to support reuse and interoperability of domain
conceptualizations (purpose 1) or as an explicit, declarative,
and machine-processable artifact coding a domain model to
enable automated reasoning (purpose 2). This duality, how-
ever, points to different (and even conflicting) sets of quality
criteria and requirements that these artifacts and the represen-
tation languages in which they are expressed should meet.

To serve purpose 1, an ontology should be constructed in a
way that maximizes the expressivity in capturing fundamen-
tal aspects of the underlying domain and in making explicit
the underlying ontological commitments. In contrast, to sup-
port purpose 2, it should be built in a way that supports de-
cidable and computationally tractable automated reasoning.
As it is well known, there is a trade-off between expressiv-
ity and maintaining these desirable computational properties

∗Original paper published as Barcelos et al., 2023

[Levesque and Brachman, 1987]. In the context of the Se-
mantic Web, the Web Ontology Language (OWL) was de-
signed to maximize the latter side of this trade-off and, de-
spite its limited expressivity (when compared to the First Or-
der [Guizzardi et al., 2021] or Higher Order Logics [Nicola,
2021] that have been used in ontology representation), OWL
has been very successful in giving rise to a plethora of speci-
fications in a large variety of domains.

These OWL ontologies, however, do not always live up to
the promise of promoting interoperability and reuse in com-
plex and critical domains [Guizzardi et al., 2010; Bittner,
2009; Flügel et al., 2022]. The reason for that goes beyond
mere logical expressivity. As beautifully expressed by Varzi’s
dictum: “No ontology without Ontology” [Varzi, 2019], to
support purpose 1 ontologies should be constructed with a
fuller consideration of (the discipline of) Ontology, i.e., with
the explicit support of true ontological theories.

To offer that kind of foundational support for the construc-
tion of OWL ontologies, some of us have proposed gUFO
[Almeida et al., 2020], an OWL super-structure implement-
ing the Unified Foundational Ontology (UFO) [Guizzardi et
al., 2022]. gUFO can support the systematic alignment of
classes in OWL ontologies to its foundational categories, in-
creasing the quality of these ontologies (in the sense of pur-
pose 1) by design.

However, there is a vast amount of OWL ontologies that
have been built without such support, and expecting the on-
tologies to be manually re-engineered is unrealistic. This is
the problem we addressed in the original paper. We proposed
a set of inference rules derived from UFO’s and gUFO’s ax-
iomatization that, given an initial seeding, are triggered to
infer the gUFO classification for the remaining classes. Fur-
ther, we implemented these rules in a tool that operates in an
automatic or semi-automatic manner. Finally, we tested this
tool against a catalog of UFO-based ontologies that collects
models designed by a variety of users and domains.

2 Unified Foundational Ontology
In UFO, endurants are object-like individuals. They endure
in time and are able to qualitatively change while maintain-
ing their identities [Guizzardi et al., 2021]. Examples include
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ordinary objects of everyday life, such as a person; particu-
larized relational properties, such as a marriage; and existen-
tially dependent aspects of objects, such as the weight of a
car. Endurant types are distinguished by metaproperties such
as rigidity and sortality.

Rigidity describes the dynamics of how a type may be in-
stantiated. Every type is either rigid, anti-rigid, or semi-rigid;
no type is both rigid and anti-rigid, rigid and semi-rigid, and
anti-rigid and semi-rigid; there is no rigid type that special-
izes an anti-rigid type; and there is no semi-rigid type that
specializes an anti-rigid type [Guizzardi et al., 2021].

Sortality defines the relation between a type and the prin-
ciples of identity of its instances. A type is a sortal if all of
its instances follow the same identity principle. Examples in-
clude the types “Person” and “Child”. If a sortal type supplies
an identity principle to its instances, it is a kind. Examples of
kinds are “Person” and “Organization”. As a complement,
non-sortal types aggregate properties that are common to dif-
ferent sortals. An example of such a type is “Work of Art”,
which applies to paintings and statues.

Every individual must follow a unique identity principle
and thus instantiate exactly one kind. No type is both a sor-
tal and a non-sortal. Every sortal specializes a unique kind;
a non-sortal cannot specialize a sortal; and non-sortals do not
have direct instances, their instances are also instances of a
sortal that either specializes the non-sortal, or that special-
izes a common non-sortal supertype [Guizzardi et al., 2021].
Combining the sortality and rigidity aspects, we obtain the
endurant types’ leaf categories: kind, subkind, phase, role,
category, phase mixin, role mixin, and mixin.

To be used on the Semantic Web, a lightweight implemen-
tation of UFO was created and named gUFO [Almeida et al.,
2020]. To reuse gUFO, one may instantiate and/or special-
ize the various classes, object properties, and data properties
it provides. A key feature of gUFO is that it includes two
class taxonomies: one with classes whose instances are in-
dividuals, such as gufo:Endurant and gufo:Object; and
another with classes whose instances are types, such as gufo
:Kind and gufo:Category. The following is an example
(in Turtle notation) of how to apply gUFO.

:Person rdfs:subClassOf gufo:Object ;
rdf:type gufo:Kind .

:Child rdfs:subClassOf :Person ;
rdf:type gufo:Phase .

3 Inference Rules
Our objective in the original study was to develop a system
to infer the UFO meta-categories of classes in an OWL on-
tology given an initial seeding. More precisely, consider ET
as the set of leaf classes defined in gUFO’s taxonomy of en-
durant types, namely gufo:Kind, gufo:Subkind, gufo:
Role, gufo:Phase, gufo:Category, gufo:RoleMixin,
gufo:PhaseMixin, and gufo:Mixin. Given an OWL on-
tology O containing a set of classes C and an initial map-
ping M (seeding) between classes in C and classes in ET
using rdf:type, what additional rdf:type mappings be-
tween classes of C and ET can we infer?

This task would be facilitated if the complete axiomatiza-
tion of UFO was implemented in gUFO. Since this is not the
case, we proposed a set of rules based on UFO’s and gUFO’s
axiomatizations. In the following, we specify inference rules
in First Order Logic. Consider that all free variables are
universally quantified, having all their occurring formulas as
their scope. We assume that our domain of quantification only
includes types. The symbol ⊕ is used here to represent an ex-
clusive or operator and ∄ as a shorthand for ¬∃.

We start by declaring our subClassOf relation, which is
reflexive (R01) and transitive (R02), directly corresponding
to the rdfs:subClassOf property and compatible with the
UFO’s specialization relation.

R01: subClassOf(x, x)

R02: subClassOf(x, y) ∧ subClassOf(y, z) →
subClassOf(x, z)

Rules R03–R16 were mapped from gUFO’s taxonomy of
endurant types. Capitalized unary predicates (e.g., Sortal,
Kind, Category) directly correspond to gUFO’s classes in
its taxonomy of types, implications correspond to specializa-
tion relations, and equivalence and exclusive disjunctions are
used to map disjoint unions.

R03: EndurantType(x) ↔ RigidType(x) ⊕
NonRigidType(x)

R04: NonRigidType(x) ↔ AntiRigidType(x) ⊕
SemiRigidType(x)

R05: EndurantType(x) ↔ Sortal(x)⊕NonSortal(x)

R06: Kind(x) → RigidType(x) ∧ Sortal(x)

R07: SubKind(x) → RigidType(x) ∧ Sortal(x)

R08: ∄x(Kind(x) ∧ SubKind(x))

R09: Role(x) → AntiRigidType(x) ∧ Sortal(x)

R10: Phase(x) → AntiRigidType(x) ∧ Sortal(x)

R11: ∄x(Phase(x) ∧Role(x))

R12: Category(x) → NonSortal(x) ∧RigidType(x)

R13: RoleMixin(x) → NonSortal(x) ∧AntiRigidType(x)

R14: PhaseMixin(x) → NonSortal(x)∧AntiRigidType(x)

R15: ∄x(PhaseMixin(x) ∧RoleMixin(x))

R16: Mixin(x) → NonSortal(x) ∧ SemiRigidType(x)

We need to complement these rules with R17–R21, which
require endurant types to instantiate at least one of the leaf
types in gUFO’s taxonomy of types. In R19, we equate semi-
rigid types with mixins, which are non-sortal semi-rigid types
because gUFO does not allow semi-rigid sortals.

R17: RigidType(x) → Category(x)∨Kind(x)∨SubKind(x)

R18: AntiRigidType(x) → Role(x) ∨ Phase(x) ∨
RoleMixin(x) ∨ PhaseMixin(x)

R19: SemiRigidType(x) → Mixin(x)

R20: Sortal(x) → Kind(x) ∨ Phase(x) ∨ Role(x) ∨
SubKind(x)

R21: NonSortal(x) → Category(x) ∨ PhaseMixin(x) ∨
RoleMixin(x) ∨Mixin(x)
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As gUFO does not implement restrictions regarding the
rigidity of an endurant type and of the types it specializes and
generalizes, we implemented rules R22–R25. R22 and R23
state that no rigid or semi-rigid type can specialize an anti-
rigid type. R24 states that for every anti-rigid sortal type x
that specializes a category y, a rigid non-sortal type, there is
at least a rigid sortal type z of which x is a subclass and which
is a subclass of y. R25 states that for every mixin, there is at
least one rigid type and one anti-rigid type that specialize it.

R22: RigidType(x) ∧ subClassOf(x, y) →
¬AntiRigidType(y)

R23: SemiRigidType(x) ∧ subClassOf(x, y) →
¬AntiRigidType(y)

R24: subClassOf(x, y) ∧ AntiRigidType(x) ∧
Sortal(x) ∧ Category(y) → ∃z(subClassOf(x, z) ∧
subClassOf(z, y) ∧RigidType(z) ∧ Sortal(z))

R25: Mixin(x) → ∃y, z(subClassOf(y, x)∧RigidType(y)∧
subClassOf(z, x) ∧AntiRigidType(z))

We implemented rules R26–R28 regarding sortality con-
straints. R26 states that every type that a kind specializes
(which is not itself) is a non-sortal. R27 states that non-sortal
types can only specialize non-sortal types. R28 states that
every sortal must specialize a unique kind.

R26: x ̸= y ∧Kind(x) ∧ subClassOf(x, y) → NonSortal(y)

R27: NonSortal(x) ∧ subClassOf(x, y) → NonSortal(y)

R28: Sortal(x) → ∃!y(subClassOf(x, y) ∧Kind(y))

To assert in our rule R31 that non-sortals do not have di-
rect instances and classify individuals of at least two differ-
ent kinds, we need a rule stating that every non-sortal must
be a superclass (or a sibling) of at least two sortals that spe-
cialize different kinds. To do that, we first define the rela-
tions shareKind and shareSuperClass. R29 states that
the types x and y share a kind if and only if there is a single
kind z such that both x and y specialize it. R30 states that the
type x shares a same superclass with the type y if and only if
there is at least one type that both x and y specialize.

R29: shareKind(x, y) ↔ ∃!z(Kind(z) ∧ subClassOf(x, z) ∧
subClassOf(y, z))

R30: shareSuperClass(x, y) ↔ ∃z(subClassOf(x, z) ∧
subClassOf(y, z))

R31: NonSortal(x) → ∃y, z(y ̸= z ∧ Sortal(y) ∧
Sortal(z) ∧ ¬shareKind(y, z) ∧ (subClassOf(y, x) ∨
shareSuperClass(x, y)) ∧ (subClassOf(z, x) ∨
shareSuperClass(x, z)))

Rules R32–R34 stem from the constraint that specializa-
tions of roles and role mixins always inhere their parent’s re-
lational dependency. So, phases cannot specialize roles and
role mixins (R32), and phase mixins cannot specialize role
mixins (R33). Further, whenever a role specializes a phase
mixin, it does that by specializing a phase that specializes
that phase mixin (R34).

R32: Phase(x) ∧ subClassOf(x, y) → ¬Role(y) ∧
¬RoleMixin(y)

R33: PhaseMixin(x) ∧ subClassOf(x, y) →
¬RoleMixin(y)

R34: Role(x) ∧ PhaseMixin(y) ∧ subClassOf(x, y) →
∃z(Phase(z) ∧ subClassOf(x, z) ∧ subClassOf(z, y))

Finally, rule R35 specifies that phases must always have
at least one sibling class sharing a common kind, while rules
R36 and R37 state that phase mixins must always have at least
one sibling sharing a common category.

R35: Phase(x) → ∃y(Phase(y) ∧ shareKind(x, y) ∧
¬subClassOf(x, y) ∧ ¬subClassOf(y, x))

R36: PhaseMixin(x) → ∃y(Category(y) ∧
subClassOf(x, y))

R37: PhaseMixin(x) ∧ Category(y) ∧ subClassOf(x, y) →
∃z(PhaseMixin(z) ∧ ¬subClassOf(x, z) ∧
¬subClassOf(z, x) ∧ subClassOf(z, y))

To verify the consistency and validate if the rules were suf-
ficient for our inference needs, we implemented the specified
rules in Alloy [Jackson, 2002]. The language is accompanied
by a solver tool, which allowed us to generate instances that
comply with our rule set and to seek counter-examples that
would invalidate the expected theorems from it. The imple-
mentation of our inference rules in Alloy is available in a git
repository (https://purl.org/scior/alloy).

4 Effectiveness Evaluation
To assess the effectiveness of our inference rules, we imple-
mented them in an open-source command-line Python tool
called Scior. The tool allows users to pick whether it should
reason under a closed-world assumption (CWA) or an open-
world assumption (OWA) [Hustadt, 1994]. When it reasons
under CWA, it presumes that all classes and properties of an
ontology have been declared. So, if a class has no subclass,
this means that there is not one. Conversely, when it rea-
sons under OWA, it presupposes that not all elements of an
ontology have been declared. So, for any class in the ontol-
ogy, there might be an undeclared class that specializes it (or
which it specializes).

We evaluated Scior from two perspectives, correctness and
effectiveness. The former is described in the original paper,
while the latter is summarized below.

4.1 Materials
To conduct our evaluation, we needed a set of taxonomies for
which the ontological categorization of its classes was known
in advance. Since no such dataset existed, we built one from
the OntoUML/UFO Catalog [Sales et al., 2023], which con-
tains models that could be directly translated to gUFO.

To assemble our test dataset, we first mapped each of the
140 OntoUML models that composed the catalog into an
OWL ontology, keeping only their classes and generaliza-
tions. Each class in the source model was mapped into an owl
:Class and each generalization was mapped into an rdfs:
subClassOf statement. We also mapped OntoUML’s stereo-
types into gUFO types. Then, from the resulting OWL on-
tologies, we extracted each independent taxonomy. This left
us with a set of 656 taxonomies.

We filtered out taxonomies with less than 10 classes or that
violated UFO’s axiomatization, which left us a dataset of 85
taxonomies (with 1624 classes). All of these could be used
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Figure 1: Results of the effectiveness evaluation under OWA.

to test Scior running under OWA, but because some mod-
els from the original catalog were not built assuming a CWA
scenario, we had to further filter out taxonomies originating
from these models. This left us with a second dataset of 67
taxonomies (with 1234 classes) to evaluate Scior under CWA.

4.2 Methods
We quantitatively evaluated the effectiveness of our infer-
ence rules by measuring the degree to which Scior could
infer, given an initial seeding, the categories of the remain-
ing classes in a taxonomy specified in OWL. We did that by
running Scior on different taxonomies, with varying levels of
seedings, and under both OWA and CWA modes.

More precisely, for each taxonomy, we repeatedly tested
Scior by providing increasing levels of seeding, starting at
10% of the classes and making increments of 10% until we
seeded 90% of the taxonomy. For each percentage level, we
ran Scior 10 times, each time providing a different randomly
selected subset of categorized classes as the seeding. We ran
these tests first with Scior on OWA and then on CWA.

For each execution of Scior, we registered how many en-
durant types’ leaf categories could be excluded from the list
of classifications a class may receive. Hence, results vary
from zero, indicating that no information could be inferred,
to seven leaf categories, representing that Scior could deter-
mine the exact classification of the evaluated class.

4.3 Results and Discussion
Figure 1 and Figure 2 show, respectively, the results obtained
for OWA and CWA models. For each level of initial seed-
ing (from 10% to 90%, laid out horizontally), we show the
portion of classes that did not have classifications excluded
(in red), that had at least one and at most four classifications
excluded (in gray), that had exactly five (in blue) and exactly
six categories excluded (in yellow), and the classes for which
Scior could determine the applicable leaf category (in green).
Results are averages for 10 executions with a randomly se-
lected subset of categorized classes for seeding.

The more classes excluded, the more effective is our pro-
posed set of rules. Results in which no classification could be
excluded indicate that Scior could not infer any ontological
property for a class and that no new knowledge was added
to it, while results that exclude seven categories determine

Figure 2: Results of the effectiveness evaluation under CWA.

the final classification of a class. Intermediate results, where
at least one and at most six categories were excluded, con-
tribute to the overall increase of knowledge as they reduce
the number of possibilities users have when manually decid-
ing the final classification for a class, leading to an easier and
less error-prone decision-making process.

These results reveal a clear correlation between the amount
of input provided and the higher number of excluded cate-
gories for both cases. The charts exhibit better classification
results for CWA models than for OWA ones. Even though
the total exclusion of possibilities is just slightly higher for
the former, the higher percentages of exclusion of intermedi-
ate numbers of categories are noteworthy. Another interesting
result is the expressive portion of cases that lead to the exclu-
sion of five categories.

We evidenced the effectiveness of Scior for ontological cat-
egorization in both OWA and CWA. Scior performed better
under CWA, always excluding some categories when more
than 50% of classes were given as seed. Although OWA mod-
els had on average 20% of their classes fully classified for a
seeding level of 90%, they still present a percentage of zero
exclusions for this amount of input (6.7%). In both cases, the
percentage of models with at least five categories excluded is
higher than 50% for a seeding of 20%.

5 Final Remarks

We presented a set of inference rules that (semi)automatically
support users in grounding their existing OWL ontologies in
terms of the categories provided by the foundational ontol-
ogy UFO as implemented in the gUFO OWL super-structure.
We have tested these rules for consistency using the formal
language Alloy and its model-finding computational support.
The rules were then implemented in a free open-source soft-
ware named Scior. We evidenced the efficiency of the in-
ference rules and Scior in both open and closed-world as-
sumption scenarios via an experiment that used diverse mod-
els from a catalog created by different modelers, for a wide
range of domains and purposes, and having different quan-
tities of classes. The results showed that, on average, Scior
could automatically exclude at least five out of eight leaf clas-
sifications with only 20% of the classes provided as seeds.
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