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Abstract
Point cloud registration (PCR) involves determining
a rigid transformation that aligns one point cloud to
another. Despite the plethora of outstanding deep
learning (DL)-based registration methods proposed,
comprehensive and systematic studies on DL-based
PCR techniques are still lacking. In this paper, we
present a comprehensive survey and taxonomy of
recently proposed PCR methods. Firstly, we con-
duct a taxonomy of commonly utilized datasets and
evaluation metrics. Secondly, we classify the exist-
ing research into two main categories: supervised
and unsupervised registration, providing insights
into the core concepts of various influential PCR
models. Finally, we highlight open challenges and
potential directions for future research. A curated
collection of valuable resources is made available
at https://github.com/yxzhang15/PCR.

1 Introduction
With the progress of sensor technology, acquiring high-
precision point cloud data has become more accessible and
prevalent [Zhang et al., 2023b; Uy et al., 2019]. Point cloud
registration (PCR), as a pivotal tool in point cloud data pro-
cessing, aims to align the point cloud data with a common
coordinate system, enabling precise three-dimensional (3D)
modeling [Qin et al., 2023; Liu et al., 2023]. This registration
process establishes a dependable foundation for point cloud
analysis and various applications [Huang et al., 2021b].

Given the rapid advancements in this field, hundreds of deep
learning (DL)-based methods have been proposed. There is
an urgent need for thorough investigations to both inspire and
steer future research endeavors. To address this necessity,
we develop a comprehensive survey and establish a detailed
taxonomy of PCR algorithms. This study categorizes these
algorithms into two types: supervised and unsupervised. Su-
pervised registration, leveraging labeled data that typically
encompasses known transformations between point clouds,
orchestrates the training process. In contrast, unsupervised
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registration hinges on the intrinsic geometric properties of
the point clouds, independent of external labels. For super-
vised algorithms, the taxonomy is segmented into four crucial
stages and two overarching concepts. The four stages include
descriptor extraction, correspondence search, outlier filter-
ing, and transformation parameter estimation, while the two
concepts encompass optimization and multimodal. The su-
pervised algorithms are systematically categorized based on
their contributions to every stage or integration of concepts.
Furthermore, for unsupervised algorithms, our taxonomy dif-
ferentiates between two methodologies: the correspondence-
free approaches, which align point clouds by minimizing fea-
ture discrepancies, and the correspondence-based approaches,
which align point clouds by establishing correspondences.
Goals of our survey. We aim to (i) classify commonly used
datasets and metrics in PCR tasks; (ii) develop a taxonomy
for DL-based registration algorithms, introducing core tech-
niques employed across various methods; and (iii) identify
open issues that could stimulate further research in PCR tasks.
The differences between our survey and others. [Gu et
al., 2020] only review traditional PCR methods, DL-based
methods are not involved. [Zhang et al., 2020] and [Huang et
al., 2021b] conduct a summary of DL-based PCR methods.
However, recent advances in unsupervised methods are not
elaborated. Additionally, they did not provide a comprehen-
sive overview of the latest research developments in the PCR
field. To address these gaps, we conduct a comprehensive sur-
vey and taxonomy of DL-based supervised and unsupervised
PCR methods. The taxonomy is summarized in Figure 1,
providing a clear and structured overview of the PCR.

2 Related Work
2.1 Definition
The goal of PCR is to find the optimal rotation R∗ and trans-
lation t∗ parameters that align source point cloud X ∈ R𝑁×3

and target point cloud Y ∈ R𝑀×3. Here, 𝑁 and 𝑀 repre-
sent the number of points in X and Y , respectively. The
mathematical objective of the PCR process is formulated by

(R∗, t∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
R∈𝑆𝑂 (3) ,t∈R3

𝑃∑︁
𝑝=1

∥(Rx𝑝 + t) − y𝑝 ∥2, (1)
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DeepVCP [Lu et al., 2019a], 3DSmoothNet [Gojcic et al., 2019], Deng et al.
[Deng et al., 2019], HRegNet [Lu et al., 2021], SpinNet [Ao et al., 2021], Stick-
yPillars [Fischer et al., 2021], YOHO [Wang et al., 2022a], RoReg [Wang et al.,
2023b], BUFFER [Ao et al., 2023].

OIF-PCR [Yang et al., 2022], GeDi [Poiesi and Boscaini, 2022], GeoTransformer
[Qin et al., 2023], RoITr [Yu et al., 2023a].

MVDesc [Zhou et al., 2018], Li et al. [Li et al., 2020b], Gojcic et al. [Gojcic et al., 2020], Wang et
al. [Wang et al., 2023a].

PointNetLK [Aoki et al., 2019], DCP [Wang and Solomon, 2019a], PointNetLK Revisited [Li et al.,
2021].

Predator [Huang et al., 2021a], OMNet [Xu et al., 2021], PCAM [Cao et
al., 2021], STORM [Wang et al., 2022b], REGTR [Yew and Lee, 2022].

PRNet [Wang and Solomon, 2019b], RPMNet [Yew and Lee, 2020], FIRE-
Net [Wu et al., 2021]

3DRegNet [Pais et al., 2020], DHVR [Lee et al., 2021], PointDSC [Bai et al., 2021], DLF [Zhang et al., 2022a], Chen
et al.[Chen et al., 2022b], MAC [Zhang et al., 2023a].

DetarNet [Chen et al., 2022c], FINet [Xu et al., 2022].

DCP [Wang and Solomon, 2019a], PRNet [Wang and Solomon, 2019b], IDAM [Li et al., 2020a].

DeepGMR [Yuan et al., 2020], OGMM [Mei et al., 2023a], Chen et al.[Chen et al., 2023a], VBReg
[Jiang et al., 2023].

PCR-CG [Zhang et al., 2022c], ImLoveNet [Chen et al., 2022a], IMFNET [Huang et al., 2022c], GMF [Huang et al.,
2022b], PEAL [Yu et al., 2023b].

Unsupervised Correspondence
-free

PPF-FoldNet [Deng et al., 2018], PCRNet [Sarode et al., 2019], UPCR [Zhang et al., 2021], UGMM [Huang et al.,
2022a], Sun et al. [Sun et al., 2023].

Correspondence
-based CEMNet [Jiang et al., 2021], RIENet [Shen et al., 2022], UDPReg [Mei et al., 2023b].

Figure 1: A taxonomy of PCR algorithms.

where x𝑝 , y𝑝 ∈ R1×3 are the p-th points in X and Y , while
𝑃 denotes the number of correspondences between X and Y .

2.2 Datasets
Datasets for PCR can be broadly classified into two categories:
artificially synthesized and acquired through real instruments.
Each category exhibits unique characteristics and has different
levels of applicability in PCR tasks. Synthesized point cloud
datasets are typically composed of virtual models created by
using computer graphics techniques to replicate real-world
environments. These datasets contain the object-level Mod-
elNet40 [Wu et al., 2015] and ShapeNet [Chang et al., 2015],
which consist of data generated through computer-aided de-
sign, as well as the scene-level dataset ICL-NUIM [Choi et
al., 2015] and FlyingShapes [Chen et al., 2023b].

However, while synthetic data are beneficial for certain
applications, they often lack the complexity and variability
found in real-world scenarios. Consequently, incorporating
real-world data into training and validation processes is es-
sential for obtaining robust algorithms. Datasets comprising
realistic point cloud data include Stanford [Curless and Levoy,
1996], ETH [Pomerleau et al., 2012], KITTI [Geiger et al.,
2012], Apollo-SouthBay [Lu et al., 2019b], ScanObjectNN
[Uy et al., 2019], and WHU-TLS [Dong et al., 2020]. Fur-

thermore, there is a 3DMatch [Zeng et al., 2017] dataset that
comprises both synthesized and realistic scans. The attributes
of various datasets are summarized in Table 1.

2.3 Metrics
Metrics play a pivotal role in evaluating and comparing the
results of point cloud registration, aiding in the selection of
optimal parameters. Consequently, the choice of an appro-
priate metric is vital for accurately assessing the quality of
a registration algorithm. We categorize evaluation metrics
based on their application scenarios. For object-level point
clouds, the commonly employed metrics include root mean
squared error, mean squared error, mean isotropic error, mean
absolute error, Chamfer distance (CD), and coefficient of de-
termination. For scene-level point clouds, the typical metrics
are registration recall, inlier ratio, feature matching recall,
relative rotation error, and relative translation error.

3 Supervised Point Cloud Registration
Supervised models for PCR typically rely on various forms of
supervisory signals, such as ground-truth labels or transfor-
mation parameters, to guide the training process. To facilitate
research on DL-based supervised methods, this section pro-
vides a structured categorization of the principal contributions
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Figure 2: The pipeline of the supervised algorithm. R-L represents the real label. PC represents point clouds. I denotes the images. S and C
represent step and concept, respectively.

Dataset Type Number S/O

Stanford [Curless and Levoy, 1996] Real 10 O
ETH [Pomerleau et al., 2012] Real 36 S
KITTI [Geiger et al., 2012] Real 22 S

ModelNet40 [Wu et al., 2015] Syn 12311 O
ShapeNet [Chang et al., 2015] Syn 55000+ O
ICL-NUIM [Choi et al., 2015] Syn 8 S
3DMatch [Zeng et al., 2017] Syn&Real 62 S

Apollo-SouthBay [Lu et al., 2019b] Real 6 S
ScanObjectNN [Uy et al., 2019] Real 15000+ O
WHU-TLS [Dong et al., 2020] Real 115 S

FlyingShapes [Chen et al., 2023b] Syn 200 S

Table 1: Datasets for PCR task. Syn means synthetic point clouds.
Real means realistic point clouds. S and O denote scene-level and
object-level, respectively.

made by various supervised algorithms across four key stages
and two fundamental concepts. Such a taxonomy not only
elucidates valuable technologies but also presents registration
methods in a clear and concise manner. The four steps and two
concepts of the supervised registration algorithm are shown
in Figure 2. It is worth noting that not every algorithm frame-
work contains the four steps and involves these two concepts.

3.1 Descriptor Extraction
In PCR tasks, descriptors are essential, and markedly influ-
ence the discriminability of features. Here, we describe the
PCR algorithms that mainly contribute to descriptor extraction
from two perspectives, which are two-view and multi-view al-
gorithms.
Two-view. The first perspective involves two-view registra-
tion, which emerges as the prevalent approach in the field of
PCR. We further classify these methods into two categories:
keypoint-based and keypoint-free.

Keypoint-based needs to detect significant keypoints to ob-
tain robust feature descriptors. To facilitate comprehension,
this category is further segmented based on the type of input
data employed, including points, patches, and voxel grids.

Firstly, points, serving as the fundamental elements of point
clouds, are discrete and unlinked 3D entities. Consequently,
extracting descriptors from points typically necessitates the
construction of intricate local relationships. In DeepVCP [Lu
et al., 2019a], point weighting is incorporated into an end-to-
end registration network to estimate point saliency scores, en-
abling the detection of keypoints. Subsequently, the𝐾-nearest
neighbors method is employed to establish neighborhoods
around the keypoints, followed by a permutation-invariant

network to extract more detailed descriptors. HRegNet [Lu
et al., 2021] is a hierarchical network that leverages geo-
metric features, descriptors, and similarity measures obtained
through bilateral consensus and neighborhood consensus to
establish correspondence between keypoints. The principles
of bilateral consensus and neighborhood consensus suggest
that within descriptor space, two correct corresponding points
should not only be the nearest neighbors of each other but also
exhibit similar neighborhoods. BUFFER [Ao et al., 2023] de-
signs a point-wise learner to enhance computational efficiency
and feature representation capabilities by predicting keypoints
and estimating point orientations.

Secondly, patches can directly represent the local neighbor-
hood structure. In [Deng et al., 2019], point cloud-FoldNet
and point pair features-FoldNet are utilized to extract key-
points from the point cloud patch and obtain permutation-
invariant descriptors. Additionally, a new pose estimation
method in [Deng et al., 2019] is proposed that achieves
faster and more robust results than random sample consen-
sus (RANSAC) [Fischler and Bolles, 1981]. StickyPillars
[Fischer et al., 2021] integrates keypoint detection and de-
scriptor extraction by jointly learning pixel-level and point-
level feature descriptors. YOHO [Wang et al., 2022a] and
RoReg [Wang et al., 2023b] employ advanced group equiv-
ariant feature learning techniques to achieve rotation invari-
ance, enhancing robustness against variations in point density
and noise. Furthermore, the rotation-equivariant component
in YOHO and RoReg allows for estimation with just a single
correspondence hypothesis, greatly reducing the search space
for possible transformations.

Thirdly, voxel grids can achieve uniform sampling of
point clouds by adopting grids of different, customizable
sizes. 3DSmoothNet [Gojcic et al., 2019] adopts a vox-
elized smoothed density value technique, incorporating fully
convolutional layers to model the local morphology of point
clouds. It scrutinizes the local density estimates to accom-
plish PCR. SpinNet [Ao et al., 2021] eliminates rotational
variances by aligning with a reference axis and further reduces
them through spherical voxelization and coordinate transfor-
mations. It then transforms point clouds into a manageable
cylindrical volume and generates representative feature de-
scriptors using cylindrical convolution layers.

Keypoint-free involves considering all potential correspon-
dences rather than detecting critical points. Within this per-
spective, there exist methods that utilize deep neural networks
to directly obtain descriptors that encapsulate vital informa-
tion. Subsequently, these descriptors are fed into a dedicated
module responsible for estimating the transformation parame-
ters. GeDi [Poiesi and Boscaini, 2022] operates by normaliz-
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ing the local reference frame of the point cloud patch and then
encoding it into the descriptors using a deep neural network.
These descriptors are invariant to scale and rotation, making
them effective for PCR across different application domains.

Other methodologies adopt a coarse-to-refine scheme, in
which the matching outcomes are significantly influenced by
the descriptors obtained in the initial coarse stage [Qin et al.,
2023]. GeoTransformer [Qin et al., 2023] encodes the distance
and angle information into the transformation representation,
enabling effective capture of the geometric structure within in-
dividual point clouds and revealing the geometric consistency
among the point clouds to be registered. From the viewpoint of
considering point-wise and structure, OIF-PCR [Yang et al.,
2022] employs an efficient and precise positional encoding
strategy during the coarse stage, leveraging a limited num-
ber of correspondences. Simultaneously, a joint optimization
approach is utilized to optimize the position encoding, pro-
gressively refining the point cloud features and reducing the
reliance on initialization. RoITr [Yu et al., 2023a] introduces
an aggregation module using a rotation invariant Transformer
[Vaswani et al., 2017], which is strategically inserted between
the encoder and decoder components. Its purpose is to fa-
cilitate the extraction of discriminative descriptors that are
pose-agnostic and cross-frame position awareness.

Keypoint-based methods achieve precise matching with
keypoint detection but face generalization challenges and are
less efficient. Moreover, keypoint-free methods are robust in
sparse, low-overlap point clouds but may lack detail accuracy.

Multi-view. The second perspective involves fusing informa-
tion from multi-view. MVDesc [Zhou et al., 2018] develops
a multi-view local descriptor, which is derived from images
captured from various viewpoints, specifically for character-
izing the 3D keypoints. Subsequently, MVDesc advances
a robust matching technique, aimed at rejecting outlier cor-
respondences through efficient belief propagation inference
within a defined graphical model. Li et al. [Li et al., 2020b]
integrate multi-view rendering into a neural network through
a differentiable renderer, allowing the viewpoint to be an opti-
mizable parameter for capturing more informative local con-
text around the interest points. To obtain distinctive descrip-
tors, Li et al. also design a soft view pooling module for
fusing convolutional features from different views. Gojcic et
al. [Gojcic et al., 2020] utilize iteratively reweighted least
squares (IRLS) as a global refinement technique to address
the cycle consistency and alleviate the ambiguity of initial
alignment in multi-view scanning. However, this approach
relies on dense pairwise correspondences, which introduces
significant computational overhead and increases the presence
of outliers. Consequently, it becomes challenging for IRLS to
accurately estimate the correct pose.

To address these limitations, Wang et al. [Wang et al.,
2023a] propose a novel approach. They primarily concentrate
on learning reliable initialization methods that consider the
overlap between multiple point cloud pairs. This enables the
construction of sparse yet reliable pose graphs. Furthermore,
a history reweighting function is integrated into the IRLS
framework, augmenting its generalization and robustness.

3.2 Correspondence Search
Recently, research has emerged for predicting correspon-
dences between point clouds to be registered. These methods
follow an end-to-end manner and often utilize existing point
cloud feature extraction methods directly. Specifically, we fur-
ther classify it into two categories according to the registration
objects: full-object and partial-object.
Full-object. The initial category involves full-object PCR,
where each point is capable of identifying a unique counterpart
in another point cloud. To address this problem, PointNetLK
[Aoki et al., 2019] and PointNetLK Revisited [Li et al., 2021],
leverage the permutation-invariant network PointNet [Qi et
al., 2017] as adaptable imaging functions and integrate them
into a recurrent Lucas-Kanade [Lucas and Kanade, 1981]
framework. DCP [Wang and Solomon, 2019a] employs graph
convolutional neural network and Transformer [Vaswani et al.,
2017] modeling to obtain feature representations and capture
contextual information. Subsequently, the pointer generation
mechanism is employed to estimate the correspondences.
Partial-object. The second category involves partial-object
PCR, where not every point has a corresponding point in the
other point cloud. Given the common scenario where only
a subset of the point clouds to be registered exhibits corre-
spondences, numerous noteworthy studies have emerged in
the field of partial-to-partial PCR. These studies have a spe-
cific focus on overlap prediction and optimizing the similarity
matrix accordingly.

Overlap prediction refers to estimating the overlap region
between point clouds to be registered, and then directly finding
correspondences in this region. To the best of our knowledge,
Predator [Huang et al., 2021a] is the pioneering model that in-
troduces the concept of overlapping region prediction. Preda-
tor utilizes a joint encoder and decoder architecture, wherein
a graph neural network and an overlap attention module are
sequentially applied to enhance contextual relationships and
predict the overlap score, respectively. Notably, the overlap at-
tention module facilitates early-stage information interaction
in the framework, which positively impacts the estimation of
overlapping regions.

With reference to the above concept of information inter-
action, several approaches are proposed. OMNet [Xu et al.,
2021] introduces an innovative mask prediction module that
possesses the capability to efficiently generate accurate over-
lapping masks. Moreover, OMNet establishes a direct con-
nection between the intermediate layers of the mask prediction
module and the transformation regression. This connection
enables the simultaneous optimization of both the generation
of overlapping masks and the estimation of transformation pa-
rameters. PCAM [Cao et al., 2021] employs cross-attention
matrices (CAM) to achieve feature augmentation. The CAM
facilitates simultaneous focus on both shallow geometric infor-
mation and deep contextual information, enabling the genera-
tion of more reliable matching features in overlapping regions.

In addition, several methods enhance the prediction of
overlapping regions by employing the Transformer for global
modeling. STORM [Wang et al., 2022b] incorporates a dif-
ferential sampling overlapping prediction module into dual
Transformer [Vaswani et al., 2017] layers, which facilitates
information exchange between the before and after predic-
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tion phases. It employs a dedicated layer that iteratively ap-
plies the Gumbel-softmax technique, allowing for the indepen-
dent sampling of points situated within overlapping regions.
REGTR [Yew and Lee, 2022] leverages a main architecture
composed of Transformer layers, which incorporate both self-
attention and cross-attention mechanisms. These layers are
proficient in facilitating the extraction of meaningful and en-
hanced features. Such an architectural selection empowers the
network to accurately predict the probability of each point’s
presence in overlapping regions and determine their corre-
sponding positions in another point cloud.

Optimizing the similarity matrix is a crucial aspect of fine-
grained correspondence searching. The elements of the sim-
ilarity matrix indicate the probability of correspondence be-
tween individual point pairs. Typically, a probability function
is employed to compute the similarity matrix, followed by
selecting the maximum value in each row or column to de-
termine the most probable point pairs [Wang and Solomon,
2019a]. While softmax is frequently used as the probability
function, it tends to produce a blurry correspondence map. To
address this issue, numerous studies have emerged to mitigate
the ambiguity. PRNet [Wang and Solomon, 2019b] applies
the Gumbel-softmax technique to obtain the similarity matrix,
a method that finds hard correspondences and alleviates the
ambiguity in correspondence search. In addition, to enhance
the sharpness of the resultant similarity matrix, a temperature
parameter is introduced into the Gumbel-softmax, which can
be iteratively adjusted. RPMNet [Yew and Lee, 2020] in-
corporates the optimal transport layer and annealing to learn
a similarity matrix from a hybrid feature composed of spa-
tial coordinates and geometric properties. FIRE-Net [Wu et
al., 2021] facilitates feature interactions across various hier-
archical levels of point clouds. Initially, FIRE-Net extracts
structural features from the point cloud and fosters the inter-
change of feature information. This process permits points
with high feature similarity to effectively perceive each other.

Notably, full-object registration methods are impractical in
real-world scenarios, as the point clouds subject to registra-
tion typically represent subset matches. The introduction of
partial-object registration algorithms addresses this limitation,
aligning more closely with practical requirements.

3.3 Outlier Filtering
In PCR, outliers are defined as points lacking a correspond-
ing counterpart. The principal objective of outlier filtering
is to meticulously remove these outliers. Given their sub-
stantial influence on the outcomes of registration processes,
the effective elimination of outliers is imperative to guarantee
both robustness and accuracy. To identify outliers, 3DRegNet
[Pais et al., 2020] utilizes a deep neural network to estimate
the probability of a point being classified as an outlier, which
effectively minimizes the influence of hypothetical outliers
during the registration procedure. DHVR [Lee et al., 2021]
places the initially predicted correspondences into a Hough
voting module. This module casts votes in a deliberately
sparse transformation parameter space, enhancing the accu-
rate identification of inliers. Moreover, DLF [Zhang et al.,
2022a] utilizes a classifier that combines the stacked order-
aware modules to evaluate hypothesized outliers and deter-

mine the compatibility of hypothesized inliers.
The above methods directly estimate outliers after extract-

ing features. However, during the feature extraction phase,
they predominantly rely on methods like multilayer percep-
tron, inadvertently overlooking the critical aspect of the 3D
spatial information. Furthermore, in classifying these fea-
tures, each pair is assessed separately, ignoring the important
consistency of inliers [Bai et al., 2021]. Based on the above
thinking, PointDSC [Bai et al., 2021] is proposed, which
explicitly exploits the spatial compatibility inherently con-
structed by distance. It argues that not only should the relative
distances of inliers between the point clouds to be registered
remain consistent, but there also exists an inherent relationship
among inliers within the single point cloud. Based on spatial
compatibility, a second order spatial compatibility [Chen et
al., 2022b] is proposed, which begins by converting the spa-
tial compatibility matrix into a binary form and then calculates
the similarity between two corresponding points based on the
count of their mutually compatible points. This approach
focusing on global rather than local compatibility, enhances
early-stage differentiation between inliers and outliers. MAC
[Zhang et al., 2023a] loosens the maximum clique constraint
and mines more local consistency information in the compat-
ibility graph for accurate pose hypothesis generation.

3.4 Transformation Parameter Estimation

The calculation of transformation parameters serves as the
final step in PCR, with the widely adopted methods includ-
ing RANSAC [Fischler and Bolles, 1981] and singular value
decomposition (SVD) [Arun et al., 1987]. RANSAC is com-
monly employed during the coarse registration stage to mit-
igate the impact of outliers, and it requires a predetermined
number of iterations to solve. Unlike RANSAC, SVD does
not necessitate an iterative solution. It estimates the trans-
formation parameters directly based on the pose difference
between the two point clouds, thus requiring a reliable feature
extraction network for accurate results [Zhang et al., 2022b].
The process of solving SVD reveals that the rotation matrix is
computed prior to the calculation of the translation vector.

With the development of DL, some approaches strive to
solve both rotation matrix and translation vector simultane-
ously using convolutional neural network [Deng et al., 2018;
Pais et al., 2020]. The effectiveness of this idea is examined
across multiple models. However, simultaneous resolution
of transformation parameters can lead to mutual interference
[Chen et al., 2022c]. To address this issue, DetarNet [Chen et
al., 2022c] employs Siamese networks to independently de-
couple transformation parameters in a two-step process. Ini-
tially, a regression network computes the translation vector,
followed by the utilization of SVD to determine the rotation
matrix. FINet [Xu et al., 2022] leverages point-wise and
global features to enhance information association between
point clouds to be registered at multiple stages. At the same
time, a dual-branch structure containing a rotation regression
branch and a translation regression branch is designed to pre-
dict the rotation matrix and translation vector, respectively.
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3.5 Optimization
Approaches to PCR optimization focus on enhancing the en-
tire process. Based on the principles of their optimization, we
divide them into two main categories: iterative closest point
(ICP)-based methods and probability-based methods.
ICP-based. While the classical ICP algorithm may be less ef-
fective than DL-based algorithms for PCR tasks, it still offers
valuable advantages worth exploring. One such advantage
is its iterative optimization thought, which has been widely
adopted in various methods to refine estimation transforma-
tion parameters. In DCP [Wang and Solomon, 2019a] and
PRNet [Wang and Solomon, 2019b], the entire network fol-
lows an iterative process to enhance the initial prediction of the
rotation matrix and translation vector, progressively refining
them from a coarse to a fine level. More specifically, be-
fore each iteration, the point cloud to be registered is updated
with the transformation parameters estimated in the previous
iteration. This incremental refinement process allows for the
gradual improvement of the predicted transformation parame-
ters. Contrasting with the previously discussed algorithms that
iterate through the entire network, IDAM [Li et al., 2020a] dis-
tinctively positions the feature extraction component outside
the iterative loop, which reduces the computational burden to
a certain extent. Furthermore, it integrates distance informa-
tion into the iterative network and incorporates a two-stage
point elimination module. This design effectively filters out
points that are detrimental to the registration process.
Probabilistic-based. Probability-based PCR algorithms in-
tegrate probabilistic knowledge within the registration frame-
work to enhance the optimization process. These algorithms
typically utilize probabilistic models to depict the matching
relationship and inherent uncertainty between point clouds to
be registered.

As a commonly used probability model, the Gaussian mix-
ture model (GMM) finds optimal alignments by integrating
an expectation-maximization (EM) method into a maximum
likelihood framework [Eckart et al., 2018]. However, the EM
process can be computationally intensive and potentially lead
to incorrect data associations, especially in registrations with
significant angular disparities [Yuan et al., 2020]. To address
the aforementioned challenges, a technique called deep Gaus-
sian mixture registration (DeepGMR) [Yuan et al., 2020] is
proposed, which leverages a neural network to search corre-
spondences between points and GMM parameters. Further-
more, two differentiable modules are employed to estimate
the optimal transformation parameters. OGMM [Mei et al.,
2023a] utilizes predictions of the overlapping area between
two input point clouds for GMM estimation, framing the reg-
istration task as minimizing the variance between the two
GMMs. In [Chen et al., 2023a], GMM is formulated as a
distribution that encompasses comprehensive representation
capabilities, incorporating both global and local information.

In addition to GMM, the Bayesian probabilistic model is
also utilized for PCR. VBReg [Jiang et al., 2023] introduces a
variable non-local network architecture, which employs varia-
tional Bayesian inference for non-local feature learning. This
approach enables the modeling of Bayesian-driven long-range
dependencies and facilitates the acquisition of discriminative
feature representations for inlier/outlier.

Descriptor 
Extraction

Descriptor 
Extraction

Correspondence 
Relative

Transformation 
Parameter 
Estimation

Distance Loss

Other Losses Update

Figure 3: The pipeline of the unsupervised algorithm. The
red arrows and green arrows represent correspondence-free and
correspondence-based feature flows, respectively.

3.6 Multimodal
The original point cloud inherently possesses valuable struc-
tural information, which is crucial for accurate representation
and analysis. The primary objective of current multimodal
algorithms is to augment this structural data by incorporating
texture information derived from images.

PCR-CG [Zhang et al., 2022c] and PEAL [Yu et al., 2023b]
employ a two-dimensional (2D) image matching technique to
establish 2D correspondences, which are then projected onto
point clouds using a 2D to 3D projection module, facilitating
the identification of overlapping regions. ImLoveNet [Chen et
al., 2022a] also utilizes images to enhance predictions in over-
lapping regions, directly employing cross-fusion technology
to amalgamate the 3D features extracted directly from point
clouds with the 3D features simulated from two-dimensional
features derived from images. IMFNET [Huang et al., 2022c]
proposes an interpretable module to explain the contribution
of the original points to the final descriptor. This approach sig-
nificantly enhances both the transparency and effectiveness of
the descriptor. GMF [Huang et al., 2022b] integrates texture
and structural information through a cross-attention fusion
layer. Additionally, it incorporates a convolutional position
encoding layer, which is instrumental in accentuating distinc-
tions and focusing on neighboring information. Consequently,
these enhancements contribute to improving correspondence
quality and standard accuracy in the model.

4 Unsupervised Point Cloud Registration
While supervised PCR algorithms demonstrate favorable out-
comes, their success heavily depends on an extensive set of
ground-truth transformations or correspondences as supervi-
sion signals during the model training process. Needless to
say, acquiring such annotated data in real-world settings is
often both challenging and costly, which limits the practical
application scope of these supervised registration algorithms.
Consequently, unsupervised PCR algorithms are explored. In
this section, we divide unsupervised algorithms into two cat-
egories: correspondence-free and correspondence-based.

4.1 Correspondence-free
In general, correspondence-based unsupervised methods first
extract global features from the source and target point clouds
and then minimize the difference between them to regress the
transformation parameters. As depicted in Figure 3, these al-
gorithms utilize the calculation of the distance between point
clouds to define the loss function, termed distance loss. Typ-
ically, distance loss in the unsupervised methods uses CD,
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which measures the distance or feature differences between
point pairs in two point clouds bidirectionally, formulated as

L (X ,Y ) = 1
𝑁

∑
x∈X

min
y∈Y

∥x − y∥2
2 +

1
𝑀

∑
y∈Y

min
x∈X

∥y − x∥2
2.

(2)
In the field of correspondence-free unsupervised methods,

an early significant contribution is PPF-FoldNet [Deng et al.,
2018], which starts by constructing four-dimensional (4D)
point-pair features. These features are subsequently fed into
an end-to-end architecture resembling a folded network, uti-
lizing an encoder-decoder structure for reconstruction. The
loss function involves comparing the CD between the 4D point
pair features before and after reconstruction. Sun et al. [Sun
et al., 2023] have further developed the PointNetLK algorithm
for use in cross-source PCR, employing global features for CD
calculation. UGMM [Huang et al., 2022a] presents a novel
approach, redefining the PCR challenge as a clustering prob-
lem and estimating posterior probabilities through unsuper-
vised learning. This method uses the CD between Gaussian
mixtures derived from the point clouds as the loss function.
UPCR [Zhang et al., 2021] introduces dual point cloud repre-
sentations: pose-invariant and pose-related. The pose-related
representations are leveraged to learn relative poses, which are
essential for deriving transformation parameters. Moreover,
the CD is also integrated into the loss function to evaluate
the discrepancy between the source point cloud and the target
point cloud. PCRNet [Sarode et al., 2019], while following
a similar approach as UPCR in designing its loss function,
distinguishes itself by utilizing the earth mover’s distance.

4.2 Correspondence-based
Compared with the correspondence-free unsupervised
method, the correspondence-based unsupervised method first
extracts features, and then uses the correspondence relative
step in Figure 3 (including correspondence search or outlier
filtering) to establish point-level, distribution-level, or cluster-
level correspondences. Finally, the rigid transformation pa-
rameters are estimated from these correspondences. CEM-
Net [Jiang et al., 2021] integrates the scaling estimator into
the function that measures the registration error to weaken the
negative impact of outliers on registration accuracy. CEMNet
also uses CD as the loss function.

In addition to CD, correspondence-based unsupervised al-
gorithms also designed various other losses to refine aligned
point clouds. RIENet [Shen et al., 2022] proposes a reli-
able inlier estimation module and designs the neighborhood
consensus loss and spatial consistency loss to reduce the lo-
cal differences and global differences of the point cloud to
be registered. UDPReg [Mei et al., 2023b] finds correspon-
dences from cluster-level and point-level, and designs self-
consistency loss, cross-consistency loss, and local contrastive
loss to enable unsupervised learning.

5 Challenges and Opportunities
Impressive outcomes have been yielded by the existing DL-
based PCR algorithms. Here, we attempt to highlight the
existing issues and identify open questions that may serve as
a catalyst for future research.

• Towards realistic data generation: A major challenge
is bridging the gap between synthetic and real-world data.
Most methods often rely on Gaussian noise to mimic real-
istic data, which fails to capture the complexity of actual
data. Chen et al. [Chen et al., 2023c] propose a new
perspective that introduces the diffusion model to gener-
ate noisy data. Future research can focus on integrating
other generative models to simulate noise and occlusions,
or developing data generation methods that can simulate
realistic data independently of external networks.

• Abundant multimodal information: Current multi-
modal PCR algorithms enhance feature representation by
fusing image textures, which contributes to more accu-
rate and detailed mapping. Future research could further
enrich registration algorithms by integrating additional
modalities information such as (i) topologically informed
meshes, which offer advanced structural data, and (ii)
semantic-level text labels embedded in large models,
which provide contextual insights.

• Designing new metrics: [Chen et al., 2023d] designed
a new metric that effectively achieves dual optimization
in processing speed and registration accuracy. This ad-
vancement not only enhances the performance of existing
registration networks but also opens new perspectives for
PCR tasks. Future research can explore innovative evalu-
ation metrics that comprehensively consider factors such
as runtime speed, model size, and registration quality.

• Exploiting pre-trained models: Many PCR algorithms
are oriented towards the registration process to enhance
the performance of registration. However, the integra-
tion of pre-trained models remains largely unexplored.
Future research can (i) adapt existing pre-trained models
for point cloud data, which could considerably reduce
the data volume and computational resources needed for
training models from scratch, and (ii) leverage features
from pre-trained models, originally developed for other
tasks, and apply them to PCR tasks, potentially leading
to significant advancements and high efficiency.

6 Conclusion
This paper provides a comprehensive survey and taxonomy of
the DL-based PCR algorithms. First, commonly used datasets
and metrics are classified. Then, supervised and unsupervised
registration algorithms are organized and analyzed from dif-
ferent technical perspectives. Finally, the issues worthy of
attention in the future research of PCR are pointed out.
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