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Abstract

Large Language Models (LLMs) have seen signif-
icant use in domains such as natural language pro-
cessing and computer vision. Going beyond text,
image and graphics, LLMs present a significant
potential for analysis of time series data, benefit-
ing domains such as climate, IoT, healthcare, traf-
fic, audio and finance. This survey paper provides
an in-depth exploration and a detailed taxonomy
of the various methodologies employed to harness
the power of LLMs for time series analysis. We
address the inherent challenge of bridging the gap
between LLMs’ original text data training and the
numerical nature of time series data, and explore
strategies for transferring and distilling knowledge
from LLMs to numerical time series analysis. We
detail various methodologies, including (1) direct
prompting of LLMs, (2) time series quantization,
(3) aligning techniques, (4) utilization of the vi-
sion modality as a bridging mechanism, and (5) the
combination of LLMs with tools. Additionally, this
survey offers a comprehensive overview of the ex-
isting multimodal time series and text datasets in
diverse domains, and discusses the challenges and
future opportunities of this emerging field.

1 Introduction
Time series analysis plays a critical role in a variety of fields,
including climate modeling, traffic management, healthcare
monitoring and finance analytics. Time series analysis com-
prises a wide range of tasks such as classification [Liu et
al., 2023b], forecasting [Gruver et al., 2023], anomaly de-
tection, and imputation. Traditionally, these tasks have
been tackled using classical signal processing techniques
such as time-frequency analysis and decomposition-based ap-
proaches. More recently, deep learning approaches like Con-
volutional Neural Networks (CNNs), Long Short-Term Mem-
ory networks (LSTMs) [Zhang et al., 2023a], and Trans-
formers [Jin et al., 2023a] have revolutionized this field and
proved effective in extracting meaningful patterns from time
series data, making them the primary approaches of time se-
ries analysis in various application domains.
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Figure 1: Large language models have recently been applied for var-
ious time series tasks in diverse application domains.

In recent years, Large Language Models (LLMs) have
gained substantial attention particularly in the fields of Natu-
ral Language Processing (NLP) and Computer Vision (CV).
Prominent models such as GPT-4 have transformed the land-
scape of text processing by offering unprecedented accuracy
in tasks such as text generation, translation, sentiment anal-
ysis, question answering and summarization. In the CV do-
main, Large Multimodal Models (LMMs) have also facili-
tated advancements in image recognition, object detection,
and generative tasks, leading to more intelligent and capable
visual systems [Girdhar et al., 2023]. Inspired by these suc-
cesses, researchers are now exploring the potential of LLMs
in the realm of time series analysis, expecting further break-
throughs, as shown in Figure 1. While several surveys offer
a broad perspective on large models for time series in gen-
eral [Jin et al., 2023b; Ma et al., 2023], these do not specifi-
cally focus on LLMs or the key challenge of bridging modal-
ity gap, which stems from LLMs being originally trained on
discrete textual data, in contrast to the continuous numerical
nature of time series.

Our survey uniquely contributes to the existing literature
by emphasizing how to bridge such modality gap and trans-
fer knowledge from LLMs for time series analysis. Our sur-
vey also covers more diverse application domains, ranging
from climate, Internet of Things (IoT), to healthcare, traffic
management, and finance. Moreover, certain intrinsic prop-
erties of time series, like continuity, auto-regressiveness, and
dependency on the sampling rate, are also shared by audio,
speech, and music data. Therefore, we also present represen-
tative LLM-based works from these domains to explore how
we can use LLMs for other types of time series. We present
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Figure 2: Left: Taxonomy of LLMs for time series analysis (prompting, quantization, aligning which is further categorized into two groups
as detailed in Figure 4, vision as bridge, tool integration). For each category, key distinctions are drawn in comparison to the standard LLM
pipeline shown at the top of the figure. Right: We present representative works for each category, sorted by their publication dates. The use
of arrows indicates that later works build upon earlier studies. Dark(light)-colored boxes represent billion(million)-parameter models. Icons
to the left of the text boxes represent the application domains of domain-specific models, with icons’ meanings illustrated in Figure 1.

a comprehensive taxonomy by categorizing these methodolo-
gies into five distinct groups, as shown in Figure 2. If we
outline typical LLM-driven NLP pipelines in five stages - in-
put text, tokenization, embedding, LLM, output - then each
category of our taxonomy targets one specific stage in this
pipeline. Specifically, (i) Prompting (input stage) treats time
series data as raw text and directly prompts LLMs with time
series; (ii) Time Series Quantization (tokenization stage) dis-
cretizes time series as special tokens for LLMs to process;
(iii) Aligning (embedding stage) designs time series encoder
to align time series embeddings with language space; (iv) Vi-
sion as Bridge (LLM stage) connects time series with Vision-
Language Models (VLM) by employing visual representa-
tions as a bridge; (v) Tool Integration (output stage) adopts
LLMs to output tools to benefit time series analysis. Beyond
this taxonomy, our survey also compiles an extensive list of
existing multimodal datasets that incorporate both time series
and text. We conclude our paper by discussing future research
directions in this emerging and promising field.

We maintain an up-to-date Github repository1 which in-
cludes all the papers and datasets discussed in the survey.

2 Background and Problem Formulation
Large language models are characterized by their vast num-
ber of parameters and extensive training data. They excel
in understanding, generating, and interpreting human lan-
guage, and recently represent a significant advancement in
artificial intelligence. The inception of LLMs can be traced
back to models like GPT-2, BERT, BART, and T5, which
laid the foundational architecture. Over time, the evolution
of these models has been marked by increasing complex-
ity and capabilities, such as LLAMA-2, PaLM, and GPT-4.
More recently, researchers have developed multimodal large
language models to integrate and interpret multiple forms of
data, such as text, images, and time series, to achieve a more
comprehensive understanding of information.

1https://github.com/xiyuanzh/awesome-llm-time-series

This survey focuses on how LLMs could benefit time series
analysis. We first define the mathematical formulation for the
input and output, which may contain time series or (and) text
depending on the downstream tasks, as well as the models.

Input. Denoted as x, composed of time series xs ∈ RT×c

and optional text data xt represented as strings, where T, c
represent the sequence length and the number of features.

Output. Denoted as y and may represent time series, text
or numbers depending on the specific downstream task. For
time series generation or forecasting task, y represents gen-
erated time series ys or predicted k-step future time series
yT+1:T+k
s . For text generation task, such as report genera-

tion, y represents text data yt. For time series classification
or regression task, y represents numbers indicating the pre-
dicted classes or numerical values.

Model. We use fθ parameterized by θ, gϕ parameterized by
ϕ, and hψ parameterized by ψ to represent language, time se-
ries and vision models, where fθ is typically initialized from
pre-trained large language models. We optimize parameters
θ, ϕ and ψ through loss function L.

3 Taxonomy
In this section, we detail our taxonomy of applying LLMs
for time series analysis, categorized by five groups. We sum-
marize the representative works, mathematical formulation,
advantages and limitations of each category in Table 1.

3.1 Prompting
Number-Agnostic Tokenization. The method treats nu-
merical time series as raw textual data and directly prompts
existing LLMs. For example, PromptCast [Xue and Salim,
2022] proposes prompt-based time series forecasting by con-
verting numerical time series into text prompts and forecast-
ing time series in a sentence-to-sentence manner. The input
prompts are composed of context and questions following
pre-defined templates, e.g., “From {t1} to {tobs}, the aver-
age temperature of region {Um} was {xmt } degree on each
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(a) VQ-VAE based quantization method.
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(b) K-Means based quantization method.

Figure 3: Two types of index-based quantization methods.

day. What is the temperature going to be on {tobs}?” Sim-
ilar prompting methods have been applied to forecast Place-
of-Interest (POI) customer flows (AuxMobLCast) and user’s
next location (LLM-Mob). Recent works also prompt PaLM-
24B for health-related tasks such as activity recognition and
daily stress estimate [Liu et al., 2023b]. For example, they
prompt the model to “classify the following accelerometer
data in meters per second squared as either walking or run-
ning: 0.052, 0.052, 0.052, 0.051, 0.052, 0.055, 0.051, 0.056,
0.06, 0.064”. Other examples include extracting historical
price features such as open, close, high, and low prices to
prompt ChatGPT in a zero-shot fashion [Xie et al., 2023a].

Number-Specific Tokenization. More recently, LLM-
Time [Gruver et al., 2023] pointed out that Byte Pair Encod-
ing (BPE) tokenization has the limitation of breaking a single
number into tokens that don’t align with the digits, leading to
inconsistent tokenization across different floating point num-
bers and complicating arithmetic operations. Therefore, fol-
lowing LLMs such as LLaMA and PaLM, they propose to
insert spaces between digits to ensure distinct tokenization of
each digit and use a comma (“,”) to separate each time step
in a time series. They also scale time series to optimize token
usage and keep fixed precision (e.g., two digits of precision)
to efficiently manage context length. For example, they con-
vert “0.123, 1.23, 12.3, 123.0” to “1 2 , 1 2 3 , 1 2 3 0 , 1 2 3
0 0”. Meanwhile, BloomberGPT [Wu et al., 2023] trains on
financial data with text and numerical data and places each
digit in its own chunk to better handle numbers. Using sim-
ilar space-prefixed tokenization, recent works also show that
large language models are general pattern machines capable
of sequence transformation, completion and improvement.

3.2 Quantization
Quantization based method converts numerical data into dis-
crete representations as input to LLMs. This approach can
be further divided into two main categories based on the dis-
cretization technique employed.

Discrete Indices from VQ-VAE. The first type of quan-
tization method transforms continuous time series into dis-
crete indices as tokens. Among them one of the most popular
methods is training a Vector Quantized-Variational AutoEn-
coder (VQ-VAE), which learns a codebook C = {ci}Ki=1 of

K D-dimensional codewords ci ∈ RD to capture the latent
representations, as illustrated in Figure 3a. The method iden-
tifies the nearest neighbor ki of each step i of the encoded
time series representation gϕ(xs) ∈ RT

S ×D in the codebook
(S denotes the cumulative stride of VQ-VAE encoder), and
uses the corresponding indices k as the quantized input to
language models:

qi = cki , ki = argmin
j

∥gϕ(xs)i − cj∥2,k = [ki]
T
S
i=1. (1)

Based on VQ-VAE, Auto-TTE [Chung et al., 2023] quan-
tizes ECGs into discrete formats and generates 12-lead ECG
signals conditioned on text reports. DeWave [Duan et al.,
2023] adapts VQ-VAE to derive discrete codex encoding and
aligns it with pre-trained BART for open-vocabulary EEG-
to-text translation tasks. TOTEM [Talukder and Gkioxari,
2023] also quantizes time series through VQ-VAE as input
to Transformers for multiple downstream applications such
as forecasting, classification, and translation. In the audio do-
main, UniAudio [Yang et al., 2023] tokenizes different types
of target audio using Residual Vector Quantization (RVQ) (a
hierarchy of multiple vector quantizers) and supports 11 au-
dio generation tasks. VioLA unifies various crossmodal tasks
involving speech and text by converting speech utterances to
discrete tokens through RVQ. AudioGen learns discrete au-
dio representations using vector quantization layers and gen-
erates audio samples conditioned on text inputs.
Discrete Indices from K-Means. Apart from employing
VQ-VAE, researchers have also explored K-Means clustering
for index-based tokenization, which uses the centroid indices
as discretized tokens, as shown in Figure 3b. Such meth-
ods are mostly applied in the audio domain. For example,
SpeechGPT shows capability to perceive and generate multi-
modal contents using K-Means based discrete unit extrac-
tor. AudioLM discretizes codes produced by a neural audio
codec using K-means clustering to achieve high-quality syn-
thesis. It also combines discretized activations of language
models pre-trained on audio using RVQ to capture long-term
structure. Following the same quantization procedure, Au-
dioPaLM [Rubenstein et al., 2023] aligns PaLM-2 and Au-
dioLM with a joint vocabulary that can represent speech and
text with discrete tokens.
Discrete Indices from Other Techniques. Apart from the
VQ-VAE and K-Means based time-domain quantization, Fre-
qTST [Li et al., 2023] utilizes frequency spectrum as a com-
mon dictionary to discretize time series into frequency units
with weights for downstream forecasting task.
Text Categories. The second type of quantization converts
numerical data into pre-defined text categories, which is pri-
marily adopted in financial domain. For example, TDML [Yu
et al., 2023] categorizes the weekly price fluctuations into
12 bins represented as “Di” or “Ui”, where “D” indicates
a decrease in price and “U” means an increase, and i =
1, 2, 3, 4, 5, 5+ represents the level of price change.

3.3 Aligning
The third type of works trains a separate encoder for time se-
ries, and aligns the encoded time series to the semantic space
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(b) Aligning with large language models as backbones (Type
two), where the output could be time series (e.g., forecasting)
or text (e.g., EEG-to-text) depending on the downstream tasks.

Figure 4: Two types of aligning based methods.

of language models. These works can be further categorized
into two groups based on their specific aligning strategies, as
illustrated in Figure 4.

Similarity Matching through Contrastive Loss. The first
type of method aligns the time series embeddings with text
embeddings through similarity matching, such as minimizing
the contrastive loss:

L = − 1

B

B∑
i=1

log
exp(sim(gϕ(xsi), fθ(xti)))

1
γ∑B

k=1 exp(sim(gϕ(xsi), fθ(xtk)))
1
γ

,

(2)
where B, γ represent batch size and temperature parameter
that controls distribution concentrations, and sim represents
similarity score, typically computed as inner product:

sim(gϕ(xsi), fθ(xti)) = ⟨gϕ(xsi), fθ(xti)⟩. (3)

For instance, ETP [Liu et al., 2023a] integrates con-
trastive learning based pre-training to align electrocardiog-
raphy (ECG) signals with textual reports. Contrastive frame-
work is also used to align 17 clinical measurements collected
in Intensive Care Unit (ICU) to their corresponding clinical
notes [King et al., 2023]. TEST [Sun et al., 2023] uses con-
trastive learning to generate instance-wise, feature-wise, and
text-prototype-aligned time series embeddings to align with
text embeddings. TENT [Zhou et al., 2023b] aligns text em-
beddings with IoT sensor signals through a unified semantic
space using contrastive learning. JoLT [Cai et al., 2023] uti-
lizes Querying Transformer (Q-Former) optimized with con-
trastive loss to align time series and text representations.

Similarity Matching through Other Losses. Apart from
contrastive loss, other loss functions are also employed to op-
timize similarity matching between time series embeddings
and text embeddings. ECG-LLM [Qiu et al., 2023] aligns
the distribution between ECG and language embedding from
ECG statements with an Optimal Transport based loss func-
tion to train an ECG report generation model. MTAM [Han et
al., 2022] uses various aligning techniques, such as Canonical

Correlation Analysis and Wasserstein Distance, as loss func-
tions to align electroencephalography (EEG) features with
their corresponding language descriptions.

LLMs as Backbones. The second type of aligning method
directly uses large language models as backbones follow-
ing time series embedding layers. EEG-to-Text [Wang and
Ji, 2022] feeds EEG embeddings to pre-trained BART for
open vocabulary EEG-To-Text decoding and EEG-based sen-
timent classification. GPT4TS [Zhou et al., 2023a] uses
patching embeddings as input to frozen pre-trained GPT-
2 where the positional embedding layers and self-attention
blocks are retained during time series fine-tuning. The
method provides a unified framework for seven time series
tasks, including few-shot or zero-shot learning. Following
GPT4TS, researchers further incorporated seasonal-trend de-
composition (TEMPO [Cao et al., 2023]), two-stage fine-
tuning (LLM4TS [Chang et al., 2023]), domain descrip-
tions (UniTime), graph attention mechanism (GATGPT),
and spatial-temporal embedding module (ST-LLM). Time-
LLM [Jin et al., 2023a] reprograms time series data into text
prototypes as input to LLaMA-7B. It also provides natural
language prompts such as domain expert knowledge and task
instructions to augment input context. Lag-Llama builds uni-
variate probabilistic time series forecasting model based on
LLaMA architecture. In the audio, speech and music do-
mains, researchers have also designed dedicated encoders to
embed speech (WavPrompt, Speech LLaMA), music (MU-
LLaMA), and general audio inputs (LTU [Gong et al., 2023],
SALMONN [Tang et al., 2023]), and feed the embeddings to
large language models.

3.4 Vision as Bridge
Time series data can be effectively interpreted or associated
with visual representations, which align closer with textual
data and have demonstrated successful integrations with large
language models. Therefore, researchers have also leveraged
vision modality as a bridge to connect time series with LLMs.

Paired Data. ImageBind [Girdhar et al., 2023] uses image-
paired data to bind six modalities (images, text, audio, depth,
thermal, and Inertial Measurement Unit (IMU) time series)
and learn a joint embedding space, enabling new emergent
alignments and capabilities. PandaGPT [Su et al., 2023]
further combines the multimodal encoders from ImageBind
and large language models to enable visual and auditory
instruction-following capabilities. IMU2CLIP [Moon et al.,
2022] aligns IMU time series with video and text, by pro-
jecting them into the joint representation space of Contrastive
Language-Image Pre-training (CLIP). AnyMAL [Moon et
al., 2023] builds upon IMU2CLIP by training a lightweight
adapter to project the IMU embeddings into the text token
embedding space of LLaMA-2-70B. It is also capable of
transforming data from other modalities, such as images,
videos, audio, into the same text embedding space.

Physics Relationships. IMUGPT [Leng et al., 2023] gen-
erates IMU data from ChatGPT-augmented text descriptions.
It first generates 3D human motion from text using pre-
trained motion synthesis model, and derives IMU data from
3D motion based on physics relationships of motion kinetics.
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Method Subcategory Representative Works Equations Advantages Limitations

Prompting
Number-Agnostic PromptCast [Xue and Salim, 2022]

y = fθ(xs,xt)
easy to implement; lose semantics;

Number-Specific LLMTime [Gruver et al., 2023] zero-shot capability not efficient

Quantization

VQ-VAE DeWave [Duan et al., 2023] ki = argminj ∥gϕ(xs)i − cj∥2 flexibility of may require

K-Means AudioPaLM [Rubenstein et al., 2023] k = [ki]
T
S
i=1,y = fθ(k,xt) index and time two-stage

Text Categories TDML [Yu et al., 2023] y = fθ(q(xs),xt) series conversion training

Aligning
Similarity Match

ETP [Liu et al., 2023a] y = gϕ(xs) align semantics of complicated

MATM [Han et al., 2022] L = sim(gϕ(xs), fθ(xt)) different modalities; design and

LLM Backbone GPT4TS [Zhou et al., 2023a] y = fθ(gϕ(xs),xt) end-to-end training fine-tuning

Vision as Paired Data ImageBind [Girdhar et al., 2023] L = sim(gϕ(xs), hψ(xv)) additional visual not hold

Bridge TS Plots [Wimmer and Rekabsaz, 2023] y = hψ(xs) knowledge for all data

Tool
Code CTG++ [Zhong et al., 2023] z = fθ(xt) empower LLM optimization

API ToolLLM [Qin et al., 2023] y = z(xs) with more abilities not end-to-end

Table 1: Summary of five major categories of applying LLMs for time series analysis, including their respective subcategories, representative
works, mathematical formulations, advantages and limitations. q and xv represent text-based quantization process and image data.

Time Series Plots as Images. CLIP-LSTM [Wimmer and
Rekabsaz, 2023] transforms stock market data into sequences
of texts and images of price charts, and leverages pre-trained
CLIP vision-language model to generate features for down-
stream forecasting. Insight Miner [Zhang et al., 2023b] con-
verts time series windows into images using lineplot, and
feeds images into vision language model LLaVA to generate
time series trend descriptions.

3.5 Tool
This type of method does not directly use large language
models to process time series. Instead, it applies large lan-
guage models to generate indirect tools z(·), such as code
and API calls, to benefit time series related tasks.
Code. CTG++ [Zhong et al., 2023] applies GPT-4 to gen-
erate differentiable loss functions in a code format from text
descriptions to guide the diffusion model to generate traffic
trajectories. With this two-step translation, the large language
model and diffusion model efficiently bridge the gap between
user intent and traffic simulation.
API Call. ToolLLM [Qin et al., 2023] introduces a general
tool-use framework composed of data construction, model
training, and evaluation. This framework includes API calls
for time series tasks such as weather and stock forecasting.
Text Domain Knowledge. SHARE [Zhang et al., 2023a]
exploits the shared structures in human activity label names
and proposes a sequence-to-sequence structure to generate la-
bel names as token sequences to preserve the shared label
structures. It applies GPT-4 to augment semantics of label
names. GG-LLM [Graule and Isler, 2023] leverages LLaMA-
2 to encode world knowledge of common human behavioral
patterns to predict human actions without further training.
SCRL-LG [Ding et al., 2023] leverages LLaMA-7B as stock
feature selectors to extract meaningful representations from
news headlines, which are subsequently employed in rein-
forcement learning for precise feature alignments.

4 Comparison within the Taxonomy
We compare the five categories of our taxonomy and pro-
vide general guidelines for which category to choose based
on considerations of data, model, efficiency and optimization.

Data. When no training data is available and the objective
is to apply LLM for time series in an zero-shot fashion, it
is preferable to use prompting-based methods. This is be-
cause direct prompting enables the utilization of pre-trained
language models’ inherent capabilities without fine-tuning.
However, representing numbers as strings can diminish the
semantic value intrinsically tied to numerical data. There-
fore, with adequate training data, quantization or aligning-
based methods become more advantageous. As shown in Fig-
ure 2, these two categories are the most extensively studied
ones in existing literature. Furthermore, if time series data
can be interpreted or associated with visual representations,
these representations can be incorporated to utilize the intrin-
sic knowledge embedded in the vision modality or pre-trained
vision-language models.

Model. Prompting and tool integration methods tend to ap-
ply billion-parameter models as they often apply off-the-
self LLMs without architectural modifications. By con-
trast, aligning and quantization methods vary from million
to billion-parameter models, depending on the specific appli-
cation requirements and available computational resources.

Efficiency. Prompting-based methods are not efficient for
numerical data with high precision, as well as multivariate
time series as it requires transforming each dimension into
separate univariate time series, resulting in extremely long in-
put. They are also less efficient for long-term predictions due
to the computational demands of generating long sequences.
These methods are more effective when dealing with simple
numerical data that is richly interwoven with textual infor-
mation, such as opening and closing stock prices in financial
news articles. By contrast, quantization and aligning meth-
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Domain Dataset Size Major Modalities Task

IoT
Ego4D2 [Grauman et al., 2022] 3, 670h data, 3.85M narrations text, IMU, video, audio, 3D classification, forecasting

DeepSQA3 [Xing et al., 2021] 25h data, 91K questions text, imu classification, QA

Finance
PIXIU4 [Xie et al., 2023b] 136K instruction data text, tables 5 NLP tasks, forecasting

MoAT5 [Lee et al., 2023] 6 datasets, 2K timesteps text, time series forecasting

Healthcare

Zuco 2.06 [Hollenstein et al., 2019] 739 sentences text, eye-tracking, EEG classification, text generation

PTB-XL7 [Wagner et al., 2020] 60h data, 71 unique statements text, ECG classification

ECG-QA8 [Oh et al., 2023] 70 question templates text, ECG classification, QA

Audio OpenAQA-5M9 [Gong et al., 2023] 5.6M (audio, QA) tuples text, audio tagging, classification

Music MusicCaps10 [Agostinelli et al., 2023] 5.5K music clips text, music captioning, generation

Speech CommonVoice11 [Ardila et al., 2019] 7, 335h in 60 languages text, speech ASR, translation

Table 2: Summary of representative time series and text multimodal datasets.

ods are more efficient to handle long sequences, as time series
are typically down-sampled or segmented into patches before
feeding into large language models.

Optimization. Depending on the specific discretization
technique, quantization based method may require a two-
stage training process (such as first training the VQ-VAE
model), which may result in sub-optimal performance com-
pared with that achieved through end-to-end training in align-
ing methods. Using large language models as indirect tools
empowers LLMs with more capabilities to manage numeri-
cal data, but also raises the level of complexity to optimize
both LLMs and other components in an end-to-end fashion.
Therefore, existing works of tool integration typically employ
off-the-shelf LLMs without further fine-tuning.

5 Multimodal Datasets
Applying LLMs for time series benefits from the availability
of multimodal time series and text data. In this section, we in-
troduce representative multimodal datasets organized by their
respective domains (Table 2). Due to space limit, additional
datasets are listed in our Github repository12.

Internet of Things (IoT). Human activity recognition is an
important task in IoT domain, which identifies human activi-
ties given time series collected with IoT devices (such as IMU
sensors). The corresponding text data are the labels or text de-
scriptions of these activities. Ego4D [Grauman et al., 2022]
presents 3,670 hours of daily-life activity data with multiple

2https://ego4d-data.org/
3https://github.com/nesl/DeepSQA
4https://github.com/chancefocus/PIXIU
5https://openreview.net/pdf?id=uRXxnoqDHH
6https://osf.io/2urht/
7https://physionet.org/content/ptb-xl/1.0.3/
8https://github.com/Jwoo5/ecg-qa
9https://github.com/YuanGongND/ltu

10https://www.kaggle.com/datasets/googleai/musiccaps
11https://commonvoice.mozilla.org/en/datasets
12https://github.com/xiyuanzh/awesome-llm-time-series

modalities, including IMU time series, and dense temporally-
aligned textual descriptions of the activities. Ego-Exo4D fur-
ther offers three kinds of paired natural language datasets in-
cluding expert commentary, narrate-and-act descriptions pro-
vided by the participants themselves, and atomic action de-
scriptions similar as Ego4D. DeepSQA [Xing et al., 2021]
presents a generalized Sensory Question Answering (SQA)
framework to facilitate querying raw sensory data related to
human activities using natural language.

Finance. PIXIU [Xie et al., 2023b] presents multi-task and
multi-modal instruction tuning data in the financial domain
with 136K data samples. It contains both financial natu-
ral language understanding and prediction tasks, and covers
9 datasets of multiple modalities such as text and time se-
ries. MoAT [Lee et al., 2023] constructs multimodal datasets
with textual information paired with time series for each
timestep, such as news articles extracted with relevant key-
words, mostly covering finance related domains such as fuel,
metal, stock and bitcoin.

Healthcare. Zuco datasets [Hollenstein et al., 2019] con-
tain simultaneous eye-tracking and EEG during natural read-
ing and during annotation. PTB-XL [Wagner et al., 2020]
offers comprehensive metadata regarding ECG annotated
by expert cardiologists, covering information such as ECG
reports, diagnostic statements, diagnosis likelihoods, and
signal-specific properties. Based on PTB-XL, ECG-QA [Oh
et al., 2023] introduces the first Question Answering dataset
for ECG analysis, containing 70 question templates that cover
a wide range of clinically relevant ECG topics.

Audio/Music/Speech. AudioSet is a collection of 2 million
10-second audio clips excised from YouTube videos and la-
beled with the sounds that the clip contains from a set of 527
labels. OpenAQA-5M [Gong et al., 2023] dataset consists of
1.9 million closed-ended and 3.7 million open-ended, diverse
(audio, question, answer) tuples. MusicCaps [Agostinelli et
al., 2023] is a high-quality music caption dataset, including
5.5K music clips. MTG-Jamendo is a dataset with 55,000
audio songs in various languages. Libri-Light is an English
dataset encompassing 60,000 hours of speech data. Common-
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Voice [Ardila et al., 2019] is a multilingual speech dataset
consisting of 7,335 validated hours in 60 languages.

These datasets offer valuable benchmarks for multimodal
time series and text analysis. These contain both time se-
ries focused tasks, including classification, which is evaluated
using accuracy and macro-F1 scores, and forecasting, which
utilizes metrics such as MSE, MAE, RMSE, and MAPE, as
well as NLP focused tasks such as captioning, question an-
swering, and translation, assessed through BLEU, ROUGE,
METEOR, and EM scores, among others.

6 Challenges and Future Directions
6.1 Theoretical Understanding
Existing works empirically show the benefits of applying
LLMs for time series analysis. For example, recent works
have empirically shown that large language models learn lin-
ear representations of space and time across multiple scales
that are robust to prompting variations. Despite these em-
pirical findings, there remains a gap in theoretical under-
standing of how models, primarily trained on textual data,
can effectively interpret numerical time series. As a prelimi-
nary theoretical analysis, it is proved that Transformer models
can universally approximate arbitrary continuous sequence-
to-sequence functions on a compact domain [Yun et al.,
2019]. Additionally, GPT4TS [Zhou et al., 2023a] the-
oretically shows that such generic capability of large lan-
guage models can be related to Principal Component Anal-
ysis (PCA), as minimizing the gradient with respect to the
self-attention layer shares similarities with PCA. Further in-
vestigations on the generalizability of large language models
on numerical data is essential to establish solid understanding
of the synergy between LLMs and time series analysis.

6.2 Multimodal and Multitask Analysis
Existing papers that apply LLMs for time series analysis
mostly focus on single modality and single task at a time,
such as forecasting, classification, text generation, and do not
support simultaneous multimodal and multitask analysis. In
computer vision and audio domains, models such as Unified-
IO and UniAudio [Yang et al., 2023] have unified multiple in-
put modalities into a sequence of discrete vocabulary tokens
to support multiple tasks within a single transformer-based
architecture. More research into leveraging LLMs for mul-
timodal and multitask analysis would lead to more powerful
time series foundation models.

6.3 Efficient Algorithms
Time series, especially those that are multivariate or pos-
sess long history information may increase the computational
complexity for existing large language models. Patching
(treating each segmented patch as a token) has been a widely
adopted strategy to improve performance as well as reduce
complexity, but large patches may obscure the semantic infor-
mation of time series and negatively impact the performance.
Therefore, developing more efficient algorithms is especially
crucial for facilitating large-scale time series analysis with
LLMs and enhancing interactions with end users.

6.4 Combining Domain Knowledge
Combining existing statistical domain knowledge with LLMs
may further boost the model’s capability for time series anal-
ysis. For example, TEMPO [Cao et al., 2023] applies time
series seasonal-trend decomposition and treats decomposed
components as different semantic inductive biases as input to
the pre-trained transformer. FreqTST [Li et al., 2023] lever-
ages insights from the frequency domain by tokenizing single
time series into frequency units with weights for downstream
forecasting. Further incorporating domain knowledge, such
as wavelet decomposition, auto-correlation analysis, and em-
pirical mode decomposition may augment LLMs’ capabilities
in analyzing time series data.

6.5 Customization and Privacy
Existing works on large language models and time series
analysis typically train a global model for all end users. Train-
ing customized models for different users based on the global
model may bring further benefits and flexibility. Another im-
portant consideration is privacy, especially as many time se-
ries data are collected in private settings for clinical purposes
or smart home applications. Federated learning offers a so-
lution by enabling the training of machine learning models
across multiple decentralized devices holding local data sam-
ples. Advancing research into model customization and user
privacy preservation like federated learning would broaden
the utility of LLM-empowered time series analysis.

7 Conclusion
We present the first survey that systematically analyzes the
categorization of transferring knowledge from large language
models for numerical time series analysis: direct prompt-
ing, time series quantization, aligning, the use of the vision
modality to connect text and time series, and the integration
of large language models with other analytical tools. For each
category, we introduce their mathematical formulation, rep-
resentative works, and compare their advantages and limita-
tions. We also introduce representative multimodal text and
time series datasets in various domains such as healthcare,
IoT, finance, and audio. Concluding the paper, we outline
the challenges and emerging directions for potential future
research of LLM-empowered time series analysis.
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