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Abstract

Big models have achieved revolutionary break-
throughs in the field of AI, but they also pose poten-
tial ethical and societal risks to humans. Address-
ing such problems, alignment technologies were in-
troduced to make these models conform to human
preferences and values. Despite the considerable
advancements in the past year, various challenges
lie in establishing the optimal alignment strategy,
such as data cost and scalable oversight, and how
to align remains an open question. In this sur-
vey paper, we comprehensively investigate value
alignment approaches. We first unpack the histori-
cal context of alignment tracing back to the 1920s
(where it comes from), then delve into the math-
ematical essence of alignment (what it is), shed-
ding light on the inherent challenges. Following
this foundation, we provide a detailed examina-
tion of existing alignment methods, which fall into
three categories: RL-based Alignment, SFT-based
Alignment, and Inference-Time Alignment, and
demonstrate their intrinsic connections, strengths,
and limitations, helping readers better understand
this research area. In addition, two emerging topics,
alignment goal and multimodal alignment, are also
discussed as novel frontiers in the field. Looking
forward, we discuss potential alignment paradigms
and how they could handle remaining challenges,
prospecting where future alignment will go.

1 Introduction
1Big models are neural models trained on massive data and
comprising more than billions of parameters [Bommasani et
al., 2021], which typically include Large Language Models
(LLMs) such as ChatGPT [Ouyang et al., 2022], Bard [Ay-
din, 2023], and LLaMA [Touvron et al., 2023], and Large
Multimodal Models (LMMs) like LLaVA [Liu et al., 2023b]

1The full version of this paper is at arxiv.org/abs/2403.04204.

and Gemini [Team et al., 2023]. Distinct from small mod-
els [Devlin et al., 2019], big models have exhibited two
unique features: scaling law [Kaplan et al., 2020], which
elucidates a consistent performance improvement with grow-
ing model scale, and emergent abilities [Wei et al., 2022],
showing that when model scale surpasses a certain threshold,
unexpected new capabilities occur, which are unobserved in
small models, such as in-context learning and instruction fol-
lowing [Zhao et al., 2023a]. Nevertheless, every coin has
two sides. Big models might also bring certain risks, such
as producing discrimination [Sheng et al., 2019], toxic lan-
guage [Gehman et al., 2020], and misinformation [Weidinger
et al., 2022], causing profound impacts on society. Further-
more, two features of risks have been observed, (1) inverse
scaling [McKenzie et al., 2023]: certain risks might not only
remain but even worsen with increasing model scales, and (2)
emergent risk [Wei et al., 2022]: unseen risks would arise, or
existing ones would be notably amplified with larger models,
making previously established risk-specific methods struggle
to handle rapidly arising potential problems.

To tackle the aforementioned risks, researchers have devel-
oped various alignment approaches to align LLMs with hu-
man instruction, preference, and values [Ouyang et al., 2022;
Liu et al., 2023b]. The concept of ‘alignment’ can be traced
back to Norbert Wiener’s expression, “We had better be quite
sure that the purpose put into the machine is the purpose
which we really desire” [Wiener, 1960], which is defined
as “A is trying to do what H wants it to do”, where A
and H are two intelligent agents in modern AI study [Chris-
tiano, 2018]. Subsequently, research on alignment has gradu-
ally gained prominence in the Reinforcement Learning (RL)
field [Hadfield-Menell et al., 2016; Leike et al., 2018], and
flourished in the era of big models [Kenton et al., 2021].

Despite significant progress in recent years, research on
the alignment of big models is still in an early stage, and
many ambiguities and difficulties in understanding this topic
remain. To facilitate a human-AI symbiotic future, this paper
is devoted to a comprehensive survey and analysis of exist-
ing alignment approaches. Our scope includes: i) introduc-
ing the history and elaborating on the essence of alignment
(Sec. 2), ii) reviewing existing methodologies and analyzing
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Figure 1: The development history of value alignment.

their strengths, weaknesses, and connections (Sec. 3), and iii)
discussing future challenges and research directions (Sec. 4).

2 Alignment Deciphering

2.1 The Trajectory of Alignment Development

We divide value alignment development into four stages, as
shown in Fig. 1. The first stage (1920-1960) involves the early
concerns about robots’ impact on human society in science
fiction, dating back to the 1920 play R.U.R., which introduced
the word ‘robot’ into the English language. Then Asimov
proposed Three Laws of Robotics in his story [Asimov, 1942]
that can be regarded as the earliest AI value principle.

In the second stage (1960-2008), following Wiener’s dis-
course on the moral consequences of technology [Wiener,
1960], machines’ ethical issues entered the view of scien-
tists and flourished from an interdisciplinary perspective. The
concepts of Machine Ethics [Waldrop, 1987] and General Su-
perintelligence [Bostrom, 2003] were successively proposed,
highlighting the importance of built-in values in machines.

With the rise of neural networks, the third stage (2008-
2021) began, wherein AI safety and ethics have become
key technical challenges in the AI field [Horvitz and Sel-
man, 2008]. During this period, the topic of aligning the
values of superintelligence was formally raised for the first
time [Soares and Fallenstein, 2014], and Value Alignment
was listed in the Asilomar AI Principles [Asilomar, 2017].

DeepMind discussed the alignment of LLMs [Kenton et
al., 2021], marking a step into the fourth stage (2021-), a
grand era of big models. This stage witnessed the emergence
of numerous models thriving on alignment, but also posed
open challenges [Bowman et al., 2022; Casper et al., 2023],
starting a burgeoning field with potential and discovery.

2.2 Alignment Formalization
Despite a range of work on LLM alignment, there remains
a lack of in-depth exploration into its definition, essence,
and methodologies. Since value alignment was initially em-
ployed in RL [Hadfield-Menell et al., 2016; Everitt and Hut-
ter, 2018], we consider the expected utility formalization.

Definition (Alignment) Define A and H are two intelligent
agents with utility function UA(y) and UH(y), respectively,
y ∈ Y is a action, U :Y → R. We say A is aligned with H
over Y , if ∀y1,y2 ∈ Y , UH(y1) > UH(y2), then UA(y1) >
UA(y2). The misalignment can be measured by:

L= E
y1,y2

|[UH(y1)−UH(y2)]−[UA(y1)−UA(y2)]| , (1)

which is a form from the perspective of decision theory [Car-
roll, 2018]. A stricter requirement is UH = UA and then
misalignment is defined by E

y
|UH(y)−UA(y)|. Recall the

description of alignment in Sec. 1, “A is trying to do what H
wants it to do”, then ‘want’ can be reflected by the consis-
tency between utility functions which act as a sort of values.

The methodologies of minimizing Eq. (1) can be further
categorized into two lines [Carroll, 2018; Leike et al., 2018]:

Value Learning This line aims to directly learn a reward
function to represent our intention and preference [Mnih et
al., 2015; Hadfield-Menell et al., 2016; Ouyang et al., 2022],
which can be generally formalized as:

ϕ∗=argmin
ϕ

Ey,r∗∼D(y,r∗)[(r
∗ −Rϕ(y))

2], (2)

where D is the training set of each action y and its ground-
truth reward r∗, and Rϕ is the learned reward function pa-
rameterized by ϕ. When we have the ground truth ac-
tion y∗ instead of reward r∗, we could also indirectly
learn to reward y∗ higher than other actions by minimizing:
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Ey∗∼D(y∗),y∼p(y)[max(0, α+Rϕ(y)−Rϕ(y
∗))], where p(y)

is the action distribution and α is a hyperparameter.
Deep Q-Network, Inverse Reinforcement Learning and

Human Preference Learning can all be represented in the
form of Eq. (2). OnceRϕ∗ is obtained, it can be subsequently
utilized to train an agent with standard RL techniques.

Imitation Learning Instead of learning a reward function,
this line of methods trains the agent to mimic the aligned ac-
tion, implicitly representing “what we value” [Torabi et al.,
2018]. Define a ground truth policy π(y) and a learned pol-
icy πθ(y) (agent) parameterized by θ, we could minimize the
f -divergence2 between the two policies [Go et al., 2023]:

θ∗=argmin
θ

Df [π(y)||πθ(y)], (3)

where π(y) is the empirical distribution formed by a training
set. Using KL-divergence, Eq. (3) becomes the traditional
cross-entropy loss. This method directly learns an agent to
produce behaviors aligned with humans’ preferences/values.
In Sec. 3, we will demonstrate how each popular paradigm of
LLM alignment is connected with these two lines.

2.3 Big Model Alignment Goal and Evaluation
Alignment Goal. Before delving into how to align, we first
briefly introduce what to align with. Discussions of align-
ment goal originate from the Specification Problem, i.e., how
do we define the purpose we desire from AI? [Leike et al.,
2018], which can be considered from two aspects [Gabriel,
2020]: (1) normative aspect: what goals we should encode
into AI, and (2) the technical one: how do we formalize and
model the goals. Failing to implement the goal might cause
AI to seek loopholes and accomplish the objective in unin-
tended ways, known as Specification Gaming [Skalse et al.,
2022]. From the former aspect, alignment goals range from
instructions, intentions, preferences, to interest, values and
so on [Gabriel, 2020]. Another popular goal is the Helpful,
Honest, and Harmless (HHH) principle [Askell et al., 2021].
However, a majority of work [Ouyang et al., 2022; Rafailov et
al., 2023] emphasizes alignment approaches while ignoring
analysis about what goal is the most appropriate. Misalign-
ment inadvertently leads to unintended or undesirable harms
and consequences [Casper et al., 2023].

Alignment Evaluation. The evaluation of alignment refers
to assessing how well an AI behaves in accordance with hu-
man intentions, namely calculating L in Eq (1). Early bench-
marks assess AI’s performance on specific risk criteria, such
as toxicity, bias, and misinformation [Gehman et al., 2020;
Lin et al., 2022]. Bai et al. [2022a] introduce a dataset com-
prising human preference data that assesses the helpfulness
and harmlessness of AI. This could be measured by either the
similarity (BLEU or ROUGE) between the generated con-
text y and the good/bad reference yw/ yl, or by the reward
given by a trained reward model Rθ(y) [Song et al., 2023].
While similarity-based measurement is commonly used, it
requires ground-truth references and results in low correla-
tion with human judgments. Therefore, human evaluation is

2https://en.wikipedia.org/wiki/F-divergence

also involved [Wang et al., 2022], despite being more time-
consuming and costly. Recent studies endeavor to involve
LLMs as AI evaluators in the process [Wang et al., 2023],
which is more efficient but suffers from inherent bias. There
is potential for devising a framework that combines the ad-
vantages of automated and human evaluations3.

2.4 The Challenges of Alignment
To achieve the alignment as defined in Sec. 1, various Re-
search Challenges (RC) still need to be addressed. These
challenges include, but are not limited to: RC1: Alignment
efficacy. The performance of existing alignment methods re-
quires improvement. How to align AI more accurately with
desired goals without introducing unintended biases remains
an open question. RC2: Alignment Generalization. Align-
ment goals might vary with time, culture, and context. It’s
essential to enable learned AI to keep aligned when deployed
into diverse scenarios [de Font-Reaulx, 2022]. RC3: Data
and training efficiency. Alignment training typically requires
a substantial amount of manually annotated data, which is
time- or labor-consuming and unable to keep pace with the
rapid evolution of AI [Casper et al., 2023]. RC4: Inter-
pretability of alignment. Understanding and interpreting the
alignment process and value-based decision-making of AI is
essential for AI trust and further improvement, which is re-
garded as one of the ‘biggest open questions’ [Ouyang et al.,
2022]. RC5: Alignment taxes. Alignment could potentially
hinder the capabilities of AI compared to its original counter-
part [Askell et al., 2021]. Minimizing such influence or find-
ing a better trade-off is an inevitable issue. RC6: Scalable
oversight [Bowman et al., 2022]. It’s challenging to effec-
tively regulate and control AI models as they become much
more powerful (superintelligence) than humans to prevent
undesirable issues. RC7: Specification Gaming. Alignment
goals are usually specified as an approximated proxy objec-
tive, much simpler than the real one, leading to unintended
and potentially harmful side effects [Skalse et al., 2022]. Be-
sides, developing effective evaluation methods is also critical
for alignment. These challenges remain unsolved and require
more in-depth exploration from the community.

3 Alignment Methods
The alignment approaches for LLMs mainly fall into three
paradigms (Fig. 2): RL-based Alignment (Sec. 3.1), SFT-
based Alignment (Sec. 3.2), and Inference-Time Alignment
(Sec. 3.3). In this section, we will introduce and discuss each
of these approaches, as well as the LMM alignment, and es-
tablish their connections to the definition introduced in Sec. 2.

3.1 RL-based Alignment
The past two years have witnessed a prevalent alignment
paradigm, Reinforcement Learning from Human Feedback
(RLHF) [Ouyang et al., 2022], which primarily belongs to
Value Learning but can be also regarded as a combination of
both lines in Sec. 2. Given a dataset D comprising prompts
(instructions) x and manually labeled pairs of preferred and

3More discussions on alignment goal: arxiv.org/abs/2308.12014
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Figure 2: Illustrations of different alignment paradigms.

dispreferred model responses, yw and yl, respectively, a typ-
ical RL alignment process consists of three steps:

(1) Supervised fine-tuning (SFT) step: Using

LSFT(θ) = − log
1

N

∑
i

πSFT
θ (yi|xi), (4)

where N is the size of training data, to fine-tune the LLM πθ
to endow it with instruction-following capabilities. yi is the
collected human-written high-quality model response to xi,
usually denoted as yw.

(2) Reward Model Learning: Training a reward model
(RM) Rϕ(r|y) from the preference data D which outputs
a scalar reward r representing preferences learned from hu-
mans, by minimizing the following loss:

LRM(ϕ)=−ED log
(
σ
(
Rϕ

(
yi
w|xi

)
−Rϕ

(
yi
l |xi

)))
. (5)

(3) RL Tuning: employing a policy-based deep RL algo-
rithm, typically Proximal Policy Optimization (PPO), to op-
timize the LLM πθ using the learned reward model with

max
πθ

E
x∼D,y∼πθ

[Rϕ(y|x)]−λKL [πθ(y|x)||πSFT(y|x)] , (6)

where λ is a parameter constraining the deviation from the
original model πSFT, a.k.a. reference model. This step maxi-
mizes the rewards obtained by the LLM, providing a feasible
approach for learning human interaction and feedback.

Obviously, Eq. (5) is a kind of value learning that max-
imizes the margin between the ground truth action and the
worse one. Taking a further step, we omit x and replace
the sigmoid loss in Eq. (5) with a margin loss. By setting
the ground truth reward r∗ for all yw and yl to 1 and 0, re-
spectively, we transform Eq. (5) into Ep(y,r∗) |r∗ −Rϕ(y)|,
the form of Eq. (2). Furthermore, we could represent the re-
ward as a delta distribution, and then the action-based reward
learning can also be reformed as reward-based value learning,
argmin

ϕ
Ep(y,r∗) |r∗ −Rϕ(y)| = argmin

ϕ
TV[r∗(y)||Rϕ(y)],

where TV is the Total Variation Distance.
In this way, by modifying the reward Rϕ(y) in Eq. (6) as

logRϕ(y) and incorporating an entropy regularization for πθ,

we could unify the Reward Model Learning step and the RL
Tuning one as f -divergence optimization:

argmin
ϕ,θ

TV [r∗(y)||Rϕ(y)]︸ ︷︷ ︸
Value Learning

+KL [πθ(y)||Rϕ(y)]︸ ︷︷ ︸
RL Tuning

+ λKL [πθ(y)||πSFT(y)]︸ ︷︷ ︸
Imitation Learning

, (7)

where the first term models the reward, the second matches
the policy with rewards, and the last one enforces the LLM to
mimic its previous version to mitigate catastrophic forgetting.

The idea of RLHF was initially revealed in [Christiano
et al., 2017], where human preference was expressed over
segments of agent trajectory for deep reinforcement learn-
ing, enabling the learning of more complex behaviors. After
that, Stiennon et al. [2020] adapt the RLHF technique to the
summarization task, learning human preferences on different
summaries and resulting in a significant quality improvement.
In addition, Nakano et al. [2021] propose WebGPT, which
fine-tunes GPT-3 and employs RLHF to enhance web naviga-
tion and information retrieval capabilities. Such early studies
using RLHF primarily aim to enhance model performance,
specifically in terms of ‘helpfulness’ or ‘honesty’, potentially
neglecting ‘harmlessness’ (HHH) [Askell et al., 2021]. This
omission might cause the misalignment between LLMs and
human values, resulting in model outputs that are harmful or
untruthful to users, as mentioned in Sec. 1. To reduce such
harmful information, InstructGPT [Ouyang et al., 2022] uti-
lizes RLHF to align with the user’s intentions, represented by
the labeled model responses, to adhere to the HHH principle.
RLHF technology directly gave rise to one of the most suc-
cessful interactive dialogue LLMs, ChatGPT, igniting a spark
toward Artificial General Intelligence (AGI).

Regardless of its satisfactory effectiveness, RLHF requires
simultaneously loading at least three LLMs, namely πθ, πSFT,
and Rϕ, as well as a large amount of high-quality manu-
ally labeled data, D(x,yw,yl). This poses an unaffordable
data/training cost (RC3). To tackle this challenge, Constitu-
tional AI [Bai et al., 2022b] was proposed to achieve align-
ment without human labels. This method is similar to RLHF
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but automatically creates the pairs (yw,yl) by asking the
LLM to generate and revise its responses. This framework fa-
cilitates a new line of alignment, namely RL from AI Feedback
(RLAIF). Subsequently, different variants of RLAIF were de-
veloped. Kim et al. [2023] first train the reward model by
utilizing synthetic preference data derived from LLMs with
various scales and prompts. They then automatically gener-
ate high-quality demonstrations for the SFT step, followed
by conducting RL tuning with the reward model. On the
other hand, to improve the computational efficiency of RLHF,
Gulcehre et al. [2023] propose an offline Reinforced Self-
Training (ReST) method. ReST samples multiple responses
from the latest LLM policy to augment the training dataset
(Grow Step), and then uses the filtered data to fine-tune the
LLM policy with an offline RL objective (Improve Step).
Pros and Cons: RLHF has proven to be effective in achiev-
ing relatively good generalization, holding the potential to
better utilize human feedback signals. However, it is noto-
rious for unstable training and high training/data cost (RC3),
which impedes RLHF’s further adaptability (RC2) and scal-
ability (RC6). Besides, the trade-off between different terms
in Eq. (7) is intractable (RC5), and RC4&7 also remain unre-
solved [Casper et al., 2023].

3.2 SFT-based Alignment
To reduce the complexity and cost of alignment, researchers
have paid more attention to the first step of RLHF, Super-
vised Fine-Tuning (SFT), and proposed a range of sophisti-
cated SFT variations to reach the same performance as RLHF.
Omitting x for brevity, a general form of SFT alignment is:

argmin
θ

− Ep(yw,yl) [log πθ(yw)− log πθ(yl)]

∝ KL [p(yw)||πθ(yw)]− KL [p(yl)||πθ(yl)] , (8)

indicating that this paradigm is a member of imitation learn-
ing in Eq. (3), which directly learns to mimic the preferred
behaviors while unlearning the dispreferred ones.

Without using negative examples yl, Eq. (8) reverts to
conventional instruction tuning. For example, LIMA [Zhou
et al., 2023] assumes that an LLM’s knowledge is primar-
ily gained during pretraining, and alignment teaches the
model which formats to use in interactions. It achieves
the alignment of an LLaMA-65B model by utilizing a
limited set of 1k meticulously curated instructions and
their corresponding golden responses. Like RLAIF, such
(instruction, response) data could also be automatically
constructed. Wang et al. [2022] propose SELF-INSTRUCT,
a semi-automated method for generating instruction data
to improve LLMs’ instruction following capabilities. Sim-
ilarly, SELF-ALIGN [Sun et al., 2023], based on the
SELF-INSTRUCT approach, incorporates additional human-
defined value principles to generate more helpful, ethical, and
reliable responses. To address the limitation of the methods
above using only positive feedback yw, Chain of Hindsight
(CoH) [Liu et al., 2023a] was developed to utilize the paired
feedback. During the training process, a prefix “Good” is ap-
pended to the preferred response, and “Bad” to yl. At infer-
ence, the LLM is instructed with “Good” to produce aligned
responses. CoH is equivalent to learning a conditional policy

πθ(y|r) conditioned on the reward r, and r = 1 (“Good”) for
yw otherwise r = 0 (“Bad”), that is, Ep(y,r) log πθ(y|r) ∝
KL [p(y, r)||πθ(y, r)]. Even if aligned LLMs are trained to
follow human values and avoid ‘intentional’ harms, they can
still be susceptible to attacks from malicious users. To tackle
this issue, Liu et al. [2022] propose SECOND THOUGHTS.
This method first gets the unaligned source response and an
aligned target response, and then makes the LLM learn to
make edits to recover from a poisoned context during infer-
ence. As a result, even when provided with harmful context,
the aligned LLM can generate content that aligns with hu-
man values, which is more robust to adversarial attacks. Be-
sides directly learning ground truth actions, another line is
to model the rank of responses, as ranking is often consid-
ered easier than scoring. Thus, the ranking-based loss is also
incorporated into SFT alignment to capture the relative pref-
erences and comparisons between different responses. Rank
Responses to align Human Feedback (RRHF) [Yuan et al.,
2023] is one such method, which obtains a score for each re-
sponse and then optimizes a ranking loss. This method makes
the LLM learn to assign larger generation probabilities for re-
sponses with higher rewards.

From our analysis of RLHF in Sec. 3.1, we can see that
value learning from target behaviors y can be transformed to
the one from target rewards r. Analogously, imitation learn-
ing from behaviors can also be formed as reward learning.
A milestone work in this line is Direct Preference Optimiza-
tion (DPO) [Rafailov et al., 2023]. This approach utilizes
the Bradley-Terry (BT) preference model, p∗(yw ≻ yl|x) =

exp(r∗(yw,x))
exp(r∗(yw,x))+exp(r∗(yl,x))

, which models the probability that
yw is preferred than yl, to build a mapping between the op-
timal reward function and policy, r∗(y,x) ∝ λ log π∗(y|x)

πSFT(y|x) ,
which is derived from the RLHF loss (Eq. (6)). This form
allows the direct learning of the BT preference model by op-
timizing the LLM policy with the loss:

LDPO = − E
x,yw,yl

[log σ(λ log πθ(yw|x)
πSFT(yw|x) − λ log πθ(yl|x)

πSFT(yl|x) )].

(9)
Note that DPO models human preference and implic-
itly represents the reward with policy, but we classify
it into imitation learning, as the policy is still directly
optimized using responses (actions). Following DPO, a
series of preference modeling based SFT methods have
emerged. Preference Ranking Optimization (PRO) [Song
et al., 2023] extends the BT preference model to capture
the rank of multiple responses with the Plackett-Luce Model
p∗(τ |y1, . . . ,yK ,x) =

∏K
k=1

exp(r∗(yτ(k),x))∑K
j=k exp(r∗(yτ(j),x))

, where

K is the number of responses, τ is a permutation of these
responses and τ(i) is the i-th response in the permutation.
Furthermore, Azar et al. [2023] present ψPO objective for
preference optimization, which unifies the RLHF and DPO
methods. Moreover, they derived a specific variant of ψPO,
the IPO method, to address the issue of overfitting by circum-
venting the BT preference model assumption with the training
loss: LIPO = −E(x,yw,yl)∼D[log(πθ(yw|x)πSFT(yl|x)

πθ(yl|x)πSFT(yw|x) )−
λ−1

2 ]2.
Besides, inspired by contrastive learning, some methods

learn patterns from positive samples that adhere to human
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expectations, while diverging from negative ones. Zhao
et al. [2023b] apply the Sequence Likelihood Calibration
(SLiC) method to effectively learn from human preferences
(SLiC-HF). SLiC-HF includes a rank calibration loss and
cross-entropy regularization term to encourage the model πθ
to generate positive sequences yw: LSLiC = max(0, γ −
log πθ(yw|x) + log πθ(yl|x)) − λ log πθ(yref|x), where yref
is a regularization target, and γ and λ are hyper-parameters
for margin and regularization weight, respectively. SLiC-HF
uses a margin loss instead of the ratio loss in DPO. Liu et
al. [2023c] first introduces a simulated human society called
SANDBOX, which collects interaction data through commu-
nications among numerous LM-based social agents. Then
based on contrastive learning, a novel alignment algorithm,
Stable Alignment, is designed to learn social alignment from
the collected data. Bhardwaj and Poria [2023] propose a
RED-INSTRUCT method for achieving safety alignment in
LLMs. The method involves constructing HARMFULQA
using blue and red data. Then SAFE-ALIGN strategies are
applied to fine-tune Vicuna, moving the model towards a safe
and helpful response area in the distribution while steering
it away from a harmful one. Hejna et al. [2023] propose
Contrastive Preference Learning (CPL), which uses a regret-
based model to learn a policy directly. By integrating the
regret-based preference framework with the principle of Max-
imum Entropy (MaxEnt), the supervised objective of CPL
can learn a consistent advantage function and converge to the
optimal policy based on the expert’s reward function.
Pros and Cons: SFT-based alignment provides a more flex-
ible way to model human preference and improve alignment
performance, corresponding to the imitation learning class in-
troduced in Sec. 2. Compared to RLHF, SFT is much more
efficient, requiring loading only one (Eq. (8)) or two (Eq. (9))
models. The training of SFT is more stable, and conver-
gence is faster. However, since the value learning process
is conducted in an implicit way, SFT alignment suffers from
limited smoothness and generalization (RC2), and thus rel-
atively poor performance (RC1). From Eq. (8), we can see
that the imitation learning efficacy highly relies on the tar-
get behavior distribution being approximated, p(yw), p(yl),
imposing more stringent requirements on data quality (RC3).
Besides, interpretability is worse, as the reward is not directly
learned and hence hard to understand (RC4). Whether SFT
can achieve or surpass the performance of RLHF one day is a
question yet to be investigated.

3.3 Inference-Time Alignment
Considering the costs of SFT and RL, and the fact that most
mainstream LLMs are black boxes, fine-tuning based align-
ment approaches become increasingly unaffordable or in-
feasible. Therefore, another popular paradigm, Inference-
Time Alignment, which includes both an In-Context Learn-
ing (ICL) based method and a post-processing method, has
attracted more attention. ICL leverages the massive knowl-
edge and instruction-following capabilities of LLMs obtained
during the pretraining and instruction tuning phases. By di-
rectly providing value instructions or K few-shot examples
{xi,yi}Ki=1, ICL constrains the generation of the LLM to
align with human values, avoiding the additional training. In

fact, ICL can also be regarded as a kind of imitation learning.
By incorporating a shared prompt concept [Xie et al., 2021],
c, e.g., values, minimizing the divergence between p(y,x, c)
and πθ(y,x, c) can be transformed to optimizing:

argmin KL [p(y,x, c)||πθ(y,x, c)]
=argmin Ep(x,y){Ep(c|x,y) [log πθ(y|x, c)]

− KL [p(c|x,y)||πθ(c|x)]}. (10)

Omitting the KL regularization term and freezing parameters
θ, imitation learning can be viewed as implicit Bayesian infer-
ence, inferring the latent concept from given examples x,y,
and driving the LLM to generate a connected response.

Concretely, the simplest way is to prompt LLMs to gen-
erate responses that adhere to human preferences [Ganguli
et al., 2023]. Han [2023] further retrieves relevant demon-
stration examples from SFT data, concatenating them with
the input prompt. Lin et al. [2023] find that aligned LLMs
primarily learn language styles matching human preferences,
providing evidence in support of the “Superficial Alignment
Hypothesis” [Zhou et al., 2023]. Based on such findings,
they propose to utilize three consistent stylistic examples
and a system prompt for alignment. Considering the ever-
changing and diverse human values in the real world, On-the-
fly Preference Optimization (OPO) [Xu et al., 2023] lever-
ages Retrieval-Augmented Generation (RAG) to find context-
aware values, achieving dynamical alignment. In addition,
the post-processing method is also employed to achieve align-
ment. The generate-then-refine schema [Gou et al., 2023]
first generates initial responses and then enables LLMs to ver-
ify and rectify their own output. Rewindable Auto-regressive
INference (RAIN) [Li et al., 2023b] includes a self-evaluation
mechanism to assess their own outputs and a rewind mecha-
nism to search and rewind the token sets, serving as a plug-in
module. Ji et al. [2024] streamline the alignment process
through a copy and correction operation using Aligner. This
approach necessitates only an additional module stacked onto
the upstream LLM for alignment. The Aligner framework
also facilitates weak-to-strong generalization.
Pros and Cons: Inference-Time Alignment (ITA) evades
the need for training and labeled data (RC3). Without mod-
ifying the original model parameters, ITA avoids alignment
tax (RC5) and proves more suitable for black-box models.
Nonetheless, the efficacy of ITA heavily depends on the big
model’s ability to understand and follow instructions.

3.4 Multimodal Alignment
In addition to LLMs, Large Multimodal Models (LMMs)
have also entered a new chapter of development in recent
years, capable of processing multiple modalities simultane-
ously, such as images, videos, and texts, and learning map-
pings from one modality to another [Liu et al., 2023b]. The
initial achievements of aligning LLM indicate the potential
for alignment in multimodal scenarios. In detail, a series
of works integrate a pretrained vision encoder with an LLM
and conduct instruction tuning to provide the LLM with vi-
sual QA capabilities, such as LLaVA [Liu et al., 2023b],
MiniGPT-4 [Zhu et al., 2023], and so on [Li et al., 2023a;
Gong et al., 2023; Dai et al., 2023]. LLaVA [Liu et al.,
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2023b] takes the first step in extending instruction tuning
to LLMs, which combines the visual encoder of CLIP and
an LLaMA-based language decoder, and conducts visual in-
struction tuning on a multimodal dataset generated by GPT-
4. MiniGPT-4 [Zhu et al., 2023] only trains a single projec-
tion layer to align the encoded visual features with the Vicuna
language model. After instruction tuning on a curated small
dataset, MiniGPT-4 can generate more natural and reliable
language outputs. For text-to-image tasks, inspired by the
effectiveness of RLHF in LLMs, Lee et al. [2023] propose
a fine-tuning method for directly learning from human feed-
back. The process initially gathers human preference data
about whether generated images correspond to their input text
prompts, learns a reward model on this data, and finally, op-
timizes the text-to-image model using reward-weighted like-
lihood maximization to achieve alignment. To align with hu-
man aesthetic values, Wu et al. [2023] first utilize human-
selected images to fine-tune the CLIP model as a preference
classifier. Then this classifier is used to produce pseudo re-
wards for a training dataset, which is further employed to
fine-tune the Stable Diffusion model. The trained model can
generate images of better aesthetic quality that humans prefer.

Multimodality emerges as the future trajectory in big
model advancements, providing a more direct avenue than
language when engaging with humans. However, multimodal
alignment is in its initial stages, focusing on aligning with hu-
man instructions but overlooking high-level and diverse hu-
man values like virtues and social norms. Ensuring harmless-
ness poses a significant and non-negligible challenge.

4 Further Challenges and Research
Ongoing and unexplored challenges. Most of the research
challenges in Sec. 2 are still ongoing or totally unexplored,
necessitating more detailed investigation. The community
is currently mainly focusing on RC1 and RC3. Algorithm
refinements, such as RLHF, DPO, and SLiC, are conducted
to ensure that big models are aligned more accurately with
desired behaviors and preferences. Studies of RLAIF focus
on enhancing data efficiency by automating the generation of
training data, thereby reducing human intervention and in-
creasing scalability. Efforts are also made to improve train-
ing efficiency by simplifying RL-based methodologies, in-
volving algorithms like DPO and RAIN, which quicken con-
vergence and reduce GPU usage. Despite the progress and
breakthrough so far, other problems such as the generaliza-
tion (RC2, variability of values and context), interpretability
(RC4, transparent alignment process and value-based reason-
ing), alignment tax (RC5, simultaneously minimizing LLM
capability loss and maximizing alignment efficacy), scalable
oversight (RC6, supervising and regulating superintelligence)
and specification gaming (RC7, simple approximated proxy
objective) represent critical future directions.
Measures to unresolved challenges. OpenAI has estab-
lished a Superalignment4 project, dedicating 20% of their
computational resources to alignment challenges over the
next four years. Their primary strategy, termed “turning com-
pute into alignment,” focuses on refining alignment iteratively

4https://openai.com/blog/introducing-superalignment

through automated processes. The construction of an auto-
mated alignment researcher entails a tripartite process: 1)
developing a scalable, AI-centric training methodology that
guarantees both the generalization of the model (RC2) and
the capacity for human oversight (RC6), 2) validating the sys-
tem by devising methods for automatically detecting and in-
terpreting problematic behaviors and internals to enhance ro-
bustness and interoperability (RC4), and 3) conducting stress
tests to evaluate the pipeline’s effectiveness by intentionally
training misaligned models and verifying the detection of se-
vere misalignments using their techniques. The final goal is
to achieve the alignment of superintelligence [Nick, 2014].

Additionally, we should also specify more appropriate
alignment goals. Fundamentally, big models aligned with hu-
man instructions or preferences still lack intrinsic knowledge
of what constitutes truly “good” behaviors. This can lead to
the specification gaming problem (RC7). It is essential to ex-
tend the objectives to aligning more coherently with human
expectations, which might involve incorporating a deeper un-
derstanding of ethics, value theories from humanity and so-
cial science, and societal well-being into the alignment pro-
cess. One promising direction for aligning big models is so-
cialization alignment. The behaviors of social agents need
to align with the specific values and norms of the society in
which they interact with users in a iterative and dynamic man-
ner. In this way, we can strive to create big models that not
only perform actions preferred by humans but also align with
broader notions of what is considered ethically good.
Further considerations of alignment. Anthropic’s core
view5 categorizes alignment approaches into three scenarios
according to the difficulty of improving AI safety. Optimistic
scenario: the potential catastrophic risks from advanced AI
due to safety failures are minimal, as existing techniques like
RLHF [Ouyang et al., 2022] and Constitutional AI [Bai et al.,
2022b] are deemed quite promising for alignment. The Inter-
mediate scenario acknowledges the potential for catastrophic
risks, necessitating substantial scientific and engineering ef-
forts to counteract them, but remains achievable with dedi-
cated endeavors. Lastly, the Pessimistic scenario posits AI
safety as an unsolvable problem, arguing that controlling or
dictating values to a system with greater intellectual capabili-
ties than humans is impossible, thus opposes the development
or deployment of highly advanced AI systems.

5 Conclusion
In this work, we delve into the origin and essence of align-
ment, systematically introducing its development, goals, for-
malization and evaluation. We also review existing work on
alignment and analyze how each paradigm is derived from
the original form and establish their intrinsic connections. By
conducting a comprehensive analysis of alignment and iden-
tifying future challenges and research directions, we aim to
contribute to the understanding and advancement of align-
ment approaches for big models, guiding these AI systems
not only to avoid doing harm, but also to intent to do good,
ultimately achieving a human-AI symbiotic future society.

5https://www.anthropic.com/index/core-views-on-ai-safety

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Survey Track

8314

https://openai.com/blog/introducing-superalignment
https://www.anthropic.com/index/core-views-on-ai-safety


Acknowledgements
*: X. Wang and S. Duan are co-first authors. †: X. Yi and
J. Yao are corresponding authors. The work is partially sup-
ported by the National Nature Science Foundation of China
(No. 62376199, 62076184, 62076182) and Shanghai Science
and Technology Plan Project (No.21DZ1204800).

References
[Asilomar, 2017] A.I. Asilomar. Asilomar ai principles,

2017.
[Asimov, 1942] Isaac Asimov. Runaround, astouding sci-

ence fiction. New York, 1942.
[Askell et al., 2021] Amanda Askell, Yuntao Bai, Anna

Chen, et al. A general language assistant as a laboratory
for alignment. ArXiv, 2021.

[Aydin, 2023] Omer Aydin. Google bard generated literature
review: Metaverse. SSRN, 2023.

[Azar et al., 2023] Mohammad Gheshlaghi Azar, Mark
Rowland, et al. A general theoretical paradigm to under-
stand learning from human preferences. ArXiv, 2023.

[Bai et al., 2022a] Yuntao Bai, Andy Jones, Kamal Ndousse,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. ArXiv, 2022.

[Bai et al., 2022b] Yuntao Bai, Saurav Kadavath, et al. Con-
stitutional ai: Harmlessness from ai feedback. ArXiv,
2022.

[Bhardwaj and Poria, 2023] Rishabh Bhardwaj and Sou-
janya Poria. Red-teaming large language models using
chain of utterances for safety-alignment. ArXiv, 2023.

[Bommasani et al., 2021] Rishi Bommasani, Drew A Hud-
son, Ehsan Adeli, et al. On the opportunities and risks of
foundation models. ArXiv, 2021.

[Bostrom, 2003] Nick Bostrom. Ethical issues in advanced
artificial intelligence. Science fiction and philosophy: from
time travel to superintelligence, 2003.

[Bowman et al., 2022] Samuel R Bowman, Jeeyoon Hyun,
Ethan Perez, et al. Measuring progress on scalable over-
sight for large language models. ArXiv, 2022.

[Carroll, 2018] Micah Carroll. Overview of current ai align-
ment approaches. 2018.

[Casper et al., 2023] Stephen Casper, Xander Davies, et al.
Open problems and fundamental limitations of reinforce-
ment learning from human feedback. ArXiv, 2023.

[Christiano et al., 2017] Paul F. Christiano, Jan Leike,
Tom B. Brown, et al. Deep reinforcement learning from
human preferences. NeurIPS, 2017.

[Christiano, 2018] Paul Christiano. Clarifying ai alignment,
2018.

[Dai et al., 2023] Wenliang Dai, Junnan Li, Dongxu Li, et al.
Instructblip: Towards general-purpose vision-language
models with instruction tuning. ArXiv, 2023.

[de Font-Reaulx, 2022] Paul de Font-Reaulx. Alignment as
a dynamic process. NeurIPS ML Safety Workshop, 2022.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, et al.
BERT: Pre-training of deep bidirectional transformers for
language understanding. AACL, 2019.

[Everitt and Hutter, 2018] Tom Everitt and Marcus Hutter.
The alignment problem for bayesian history-based rein-
forcement learners. Under submission, 2018.

[Gabriel, 2020] Iason Gabriel. Artificial intelligence, values,
and alignment. Minds and machines, 2020.

[Ganguli et al., 2023] Deep Ganguli, Amanda Askell,
Nicholas Schiefer, et al. The capacity for moral self-
correction in large language models. ArXiv, 2023.

[Gehman et al., 2020] Samuel Gehman, Suchin Gururangan,
et al. RealToxicityPrompts: Evaluating neural toxic de-
generation in language models. EMNLP Findings, 2020.

[Go et al., 2023] Dongyoung Go, Tomasz Korbak, Germán
Kruszewski, et al. Aligning language models with prefer-
ences through f-divergence minimization. ArXiv, 2023.

[Gong et al., 2023] Tao Gong, Chengqi Lyu, Shilong Zhang,
et al. Multimodal-gpt: A vision and language model for
dialogue with humans. ArXiv, 2023.

[Gou et al., 2023] Zhibin Gou, Zhihong Shao, Yeyun Gong,
et al. Critic: Large language models can self-correct with
tool-interactive critiquing. ArXiv, 2023.

[Gulcehre et al., 2023] Caglar Gulcehre, Tom Le Paine, Sri-
vatsan Srinivasan, et al. Reinforced self-training (rest) for
language modeling. ArXiv, 2023.

[Hadfield-Menell et al., 2016] Dylan Hadfield-Menell, Stu-
art J Russell, Pieter Abbeel, et al. Cooperative inverse
reinforcement learning. NeurIPS, 2016.

[Han, 2023] Xiaochuang Han. In-context alignment: Chat
with vanilla language models before fine-tuning. ArXiv,
2023.

[Hejna et al., 2023] Joey Hejna, Rafael Rafailov, et al. Con-
trastive prefence learning: Learning from human feedback
without rl. ArXiv, 2023.

[Horvitz and Selman, 2008] Eric Horvitz and Bart Selman.
Aaai presidential panel on long-term ai futures: Interim
report from the panel chairs. AAAI, 2008.

[Ji et al., 2024] Jiaming Ji, Boyuan Chen, Hantao Lou, et al.
Aligner: Achieving efficient alignment through weak-to-
strong correction. ArXiv, 2024.

[Kaplan et al., 2020] Jared Kaplan, Sam McCandlish, et al.
Scaling laws for neural language models. ArXiv, 2020.

[Kenton et al., 2021] Zachary Kenton, Tom Everitt, et al.
Alignment of language agents. ArXiv, 2021.

[Kim et al., 2023] Sungdong Kim, Sanghwan Bae, Jamin
Shin, et al. Aligning large language models through syn-
thetic feedback. ArXiv, 2023.

[Lee et al., 2023] Kimin Lee, Hao Liu, et al. Aligning text-
to-image models using human feedback. ArXiv, 2023.

[Leike et al., 2018] Jan Leike, David Krueger, Tom Everitt,
et al. Scalable agent alignment via reward modeling: a
research direction. ArXiv, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Survey Track

8315



[Li et al., 2023a] Bo Li, Yuanhan Zhang, Liangyu Chen,
et al. Otter: A multi-modal model with in-context instruc-
tion tuning. ArXiv, 2023.

[Li et al., 2023b] Yuhui Li, Fangyun Wei, Jinjing Zhao, et al.
Rain: Your language models can align themselves without
finetuning. ArXiv, 2023.

[Lin et al., 2022] Stephanie Lin, Jacob Hilton, and Owain
Evans. TruthfulQA: Measuring how models mimic human
falsehoods. ACL, 2022.

[Lin et al., 2023] Bill Yuchen Lin, Abhilasha Ravichander,
Ximing Lu, et al. The unlocking spell on base llms: Re-
thinking alignment via in-context learning. ArXiv, 2023.

[Liu et al., 2022] Ruibo Liu, Chenyan Jia, Ge Zhang, et al.
Second thoughts are best: Learning to re-align with human
values from text edits. NeurIPS, 2022.

[Liu et al., 2023a] Hao Liu, Carmelo Sferrazza, and Pieter
Abbeel. Chain of hindsight aligns language models with
feedback. ArXiv, 2023.

[Liu et al., 2023b] Haotian Liu, Chunyuan Li, Qingyang
Wu, et al. Visual instruction tuning. ArXiv, 2023.

[Liu et al., 2023c] Ruibo Liu, Ruixin Yang, Chenyan Jia,
et al. Training socially aligned language models in sim-
ulated human society. ArXiv, 2023.

[McKenzie et al., 2023] Ian R McKenzie, Alexander
Lyzhov, Michael Pieler, et al. Inverse scaling: When
bigger isn’t better. ArXiv, 2023.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, et al. Human-level control through deep re-
inforcement learning. nature, 2015.

[Nakano et al., 2021] Reiichiro Nakano, Jacob Hilton,
Suchir Balaji, et al. Webgpt: Browser-assisted question-
answering with human feedback. ArXiv, 2021.

[Nick, 2014] Bostrom Nick. Superintelligence: Paths, dan-
gers, strategies. Oxford University Press, Oxford, 2014.

[Ouyang et al., 2022] Long Ouyang, Jeffrey Wu, Xu Jiang,
et al. Training language models to follow instructions with
human feedback. NeurIPS, 2022.

[Rafailov et al., 2023] Rafael Rafailov, Archit Sharma, Eric
Mitchell, et al. Direct preference optimization: Your lan-
guage model is secretly a reward model. ArXiv, 2023.

[Sheng et al., 2019] Emily Sheng, Kai-Wei Chang, et al. The
woman worked as a babysitter: On biases in language gen-
eration. EMNLP, 2019.

[Skalse et al., 2022] Joar Skalse, Nikolaus Howe, Dmitrii
Krasheninnikov, et al. Defining and characterizing reward
gaming. NeurIPS, 2022.

[Soares and Fallenstein, 2014] Nate Soares and Benja Fall-
enstein. Aligning superintelligence with human interests:
A technical research agenda. MIRI technical report, 2014.

[Song et al., 2023] Feifan Song, Bowen Yu, et al. Preference
ranking optimization for human alignment. ArXiv, 2023.

[Stiennon et al., 2020] Nisan Stiennon, Long Ouyang, Jef-
frey Wu, et al. Learning to summarize with human feed-
back. NeurIPS, 2020.

[Sun et al., 2023] Zhiqing Sun, Yikang Shen, Qinhong
Zhou, et al. Principle-driven self-alignment of language
models from scratch with minimal human supervision.
ArXiv, 2023.

[Team et al., 2023] Gemini Team, Rohan Anil, Sebastian
Borgeaud, et al. Gemini: a family of highly capable mul-
timodal models. ArXiv, 2023.

[Torabi et al., 2018] Faraz Torabi, Garrett Warnell, and Peter
Stone. Behavioral cloning from observation. ArXiv, 2018.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, Gau-
tier Izacard, et al. Llama: Open and efficient foundation
language models. ArXiv, 2023.

[Waldrop, 1987] M Mitchell Waldrop. A question of respon-
sibility. AI Magazine, 1987.

[Wang et al., 2022] Yizhong Wang, Yeganeh Kordi, Swa-
roop Mishra, et al. Self-instruct: Aligning language model
with self generated instructions. ArXiv, 2022.

[Wang et al., 2023] Yidong Wang, Zhuohao Yu, Zhengran
Zeng, et al. Pandalm: An automatic evaluation benchmark
for llm instruction tuning optimization. ArXiv, 2023.

[Wei et al., 2022] Jason Wei, Yi Tay, Rishi Bommasani, et al.
Emergent abilities of large language models. ArXiv, 2022.

[Weidinger et al., 2022] Laura Weidinger, Jonathan Uesato,
Maribeth Rauh, et al. Taxonomy of risks posed by lan-
guage models. ACM FAccT, 2022.

[Wiener, 1960] Norbert Wiener. Some moral and technical
consequences of automation: As machines learn they may
develop unforeseen strategies at rates that baffle their pro-
grammers. Science, 1960.

[Wu et al., 2023] Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui
Zhao, and Hongsheng Li. Better aligning text-to-image
models with human preference. ArXiv, 2023.

[Xie et al., 2021] Sang Michael Xie, Aditi Raghunathan,
et al. An explanation of in-context learning as implicit
bayesian inference. ICLR, 2021.

[Xu et al., 2023] Chunpu Xu, Steffi Chern, Ethan Chern,
et al. Align on the fly: Adapting chatbot behavior to estab-
lished norms. ArXiv, 2023.

[Yuan et al., 2023] Zheng Yuan, Hongyi Yuan, Chuanqi Tan,
et al. Rrhf: Rank responses to align language models with
human feedback without tears. ArXiv, 2023.

[Zhao et al., 2023a] Wayne Xin Zhao, Kun Zhou, Junyi Li,
et al. A survey of large language models. ArXiv, 2023.

[Zhao et al., 2023b] Yao Zhao, Rishabh Joshi, Tianqi Liu,
et al. Slic-hf: Sequence likelihood calibration with human
feedback. ArXiv, 2023.

[Zhou et al., 2023] Chunting Zhou, Pengfei Liu, Puxin Xu,
et al. Lima: Less is more for alignment. ArXiv, 2023.

[Zhu et al., 2023] Deyao Zhu, Jun Chen, et al. Minigpt-4:
Enhancing vision-language understanding with advanced
large language models. ArXiv, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Survey Track

8316


	Introduction
	Alignment Deciphering
	The Trajectory of Alignment Development
	Alignment Formalization
	Big Model Alignment Goal and Evaluation
	The Challenges of Alignment

	Alignment Methods
	RL-based Alignment
	SFT-based Alignment
	Inference-Time Alignment
	Multimodal Alignment

	Further Challenges and Research
	Conclusion

