
Beyond the Limits: A Survey of Techniques to Extend the Context Length in
Large Language Models

Xindi Wang1,2,3 , Mahsa Salmani1 , Parsa Omidi1 , Xiangyu Ren1 ,
Mehdi Rezagholizadeh1 and Armaghan Eshaghi1∗

1Huawei Technologies Canada, Canada
2University of Western Ontario, Canada

3Vector Institute for Artificial Intelligence, Canada
xwang842@uwo.ca, {mahsa.salmani1, parsa.omidi, xiangyu.ren1, mehdi.rezagholizadeh,

armaghan.eshaghi}@huawei.com

Abstract
Recently, large language models (LLMs) have
shown remarkable capabilities including under-
standing context, engaging in logical reasoning,
and generating responses. However, this is
achieved at the expense of stringent computational
and memory requirements, hindering their ability
to effectively support long input sequences. This
survey provides an inclusive review of the recent
techniques and methods devised to extend the se-
quence length in LLMs, thereby enhancing their ca-
pacity for long-context understanding. In particu-
lar, we review and categorize a wide range of tech-
niques including architectural modifications, such
as modified positional encoding and altered atten-
tion mechanisms, which are designed to enhance
the processing of longer sequences while avoiding
a proportional increase in computational require-
ments. The diverse methodologies investigated in
this study can be leveraged across different phases
of LLMs, i.e., training, fine-tuning and inference.
This enables LLMs to efficiently process extended
sequences. The limitations of the current method-
ologies is discussed in the last section along with
the suggestions for future research directions, un-
derscoring the importance of sequence length in the
continued advancement of LLMs.

1 Introduction
In the rapidly evolving domain of natural language processing
(NLP), large language models (LLMs), such as GPT-3, PaLM
and LLaMA, emerged as pivotal tools that have proved pro-
ficiency in understanding and generating human language in-
cluding tasks such as language understanding, language gen-
eration, complex reasoning and other domains such as com-
puter vision and autonomous driving [Brown et al., 2020;
Touvron et al., 2023; Chowdhery et al., 2024; Wang et al.,
2023]. In many real-world scenarios, such as multi-turn con-
versations and document summarization, LLMs are required
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to comprehend and produce long sequences in order to per-
form the task accurately during the inference phase. These
context sequences are often substantially longer than those
the LLMs were trained with, emphasising the fact that LLMs
must have the capability to deal with lengthy sequences.

Processing long sequences by LLMs is a non-trivial task,
which involves computational, structural, and practical chal-
lenges. Notably, increased sequence lengths can expo-
nentially escalate processing requirements, particularly in
transformer-based models with self-attention mechanisms.
This not only increases the computational cost but also, the
memory demands often surpass the capacity of advanced
GPUs and thus, impeding efficient training [Dao et al., 2022].
Hence, the efficiency of attention mechanisms, pivotal in ad-
dressing longer sequences, remains a key area of research,
aiming to balance computational efficiency with model per-
formance [Gu and Dao, 2023]. Moreover, maintaining con-
textual understanding and coherence over extended input
spans further complicates the scenario, as it requires ad-
vanced methods to capture and utilize long-range dependen-
cies. Finally, the evaluation and benchmarking of LLMs
on long-sequence tasks also pose a significant challenge,
demanding novel metrics and datasets for effective assess-
ment [Kwan et al., 2023]. Altogether, the aforementioned
challenges highlight the intricacy and importance of advanc-
ing LLMs to proficiently support and utilize long sequences
for various tasks.

In this survey, we provide a concise review of various ap-
proaches that have been developed to enable LLMs to handle
long sequences. The overarching goal of the survey is to pro-
vide a detailed insight into those methods, as well as to high-
light possible directions for future research. The techniques
include architectural modifications, such as positional encod-
ing modification, modified attention mechanisms and model
compression techniques, which aim to optimize the process-
ing of longer sequences without exponentially increasing
computational and memory demands. Additionally, we ex-
plore the methods that can be adopted in different phases
(training, fine-tuning, and inference), and have been pivotal
in enabling LLMs to handle longer sequences, efficiently.
The taxonomy of our literature review is shown in Figure
1. While there are existing surveys addressing LLMs with
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Figure 1: Taxonomy of Long-context LLM literature, which includes five distinct sections: length extrapolation, attention approximation,
attention-free transformers, model compression, and hardware-aware transformers. We also establish connections between the methodologies
and their related applicability scenarios. Some entail training a new model from scratch, others involve fine-tuning pre-trained models, and
some implement over inference without any updates of hyper-parameters.

a more general scope [Zhao et al., 2023; Naveed et al., 2023;
Wan et al., 2023], this survey is particularly focused on eval-
uating the articles dealing with long sequences in LLMs.
Moreover, there are other reviews on efficient Transform-
ers and their training methodologies [Zhuang et al., 2023;
Huang et al., 2023], but this survey specifically focuses on
models and strategies that aim at enhancing the management
of longer input sequences.

2 Length Extrapolation
In this section, we focus on methods whose primary objective
is to enable LLMs to effectively support longer sequences.
Among these methods, positional extrapolation and interpo-
lation emerge as pivotal methods for extending the model’s
capacity to handle sequences longer than those on which the
LLMs have been originally trained. Furthermore, we explore
context window segmentation and sliding, a crucial technique
that manipulates input sequences into smaller segments or
moves the context window to enable processing of the longer
sequence. Lastly, we review the strategy of prompt compres-
sion, an innovative approach to condense input prompts effi-
ciently while retaining the essential information.
Positional Extrapolation and Interpolation. Position ex-
trapolation and interpolation refer to the techniques that ad-
just the positional embedding (PE) associated with input to-
kens, which modify how these tokens are positioned and in-
terpreted within the model’s architecture. PEs play a pivotal
role in the architecture of transformer models since they im-
part a crucial sense to the input tokens, enabling the model
to discern the specific position of each token within the se-
quence. This ensures that the model can effectively capture
and utilize the sequential information inherent in the input
data. The vanilla transformer [Vaswani et al., 2017] presents

a novel Sinusoidal PE (SinPE) that uses sinusoidal functions
to represent the absolute positions of the tokens. SinPE has
become a widely used method, yet it has prompted further re-
search into alternative approaches for handling positional in-
formation in transformer models. One alternative approach is
trainable PEs, as explored by Chen et al. [2021], which learn
an embedding mapping specific to the task. Another approach
focuses on relative PEs, introduced by Shaw et al. [2018],
which encodes the relative positions of tokens rather than
their absolute positions, allowing for more flexible handling
of varying sequence lengths. Additionally, the concept of Ro-
tary PEs (RoPE) [Su et al., 2024], involves rotating the query
and key representations at an angle corresponding to the ab-
solute positions of the tokens within the input sequence. This
method provides a unique way of integrating positional infor-
mation that can enhance the model’s ability to capture com-
plex dependencies. To further improve efficiency and support
longer sequences, recent studies have investigated methods
for positional extrapolation and interpolation.

Positional extrapolation refers to the model’s ability to han-
dle input sequences that exceed the length of those it was
trained on, enabling the preservation of context and coher-
ence over extended sequences. This capability is important
for models tasked with understanding and generating lengthy
documents or conversations. For example, Attention with
Linear Biases (ALiBi) [Press et al., 2022] introduces a heuris-
tic of negative causal attention bias, which dispenses with PEs
for tokens in the transformer model. ALiBi encodes position
information by biasing the query-key attention scores pro-
portionally to the distance between each pair of tokens. As
compared to other PE schemes, ALiBi demonstrates superior
extrapolation capabilities to unseen sequence lengths. Dif-
ferent from ALiBi, xPOS [Sun et al., 2023b] extends causal
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RoPE, which incorporates a unique exponential decay factor
at each dimension of the rotation angle vector, thereby im-
proving length extrapolation. Another approach CLEX [Chen
et al., 2024] uses ordinary differential equations to generalize
PE scaling. By modeling continuous dynamics with length
scaling factors, CLEX effectively overcomes the constraints
of traditional positional extrapolation techniques.

On the other hand, positional interpolation deals with the
model’s proficiency in inserting or integrating new informa-
tion within existing sequences. For example, positional inter-
polation proposed by Chen et al. [2023] applies linear scal-
ing on the position indices, effectively aligning the maximum
position index to correspond with the context window limit
previously established during the pre-training phase. Ex-
perimental observations indicate that this strategy exhibits
greater stability and necessitates fewer fine-tuning steps com-
pared to direct extrapolation methods. Additionally, YaRN
[Peng et al., 2023b] extends RoPE by adopting an uneven
interpolation of frequencies, specifically preserving the high-
frequency components. This approach avoids losing impor-
tant positional details that enhances the ability of the model
to maintain critical positional information.

Context Window Segmentation and Sliding. LLMs based
on transformers are inherently constrained by limited context
windows, rendering them incapable of directly integrating or
utilizing the entirety of information in long sequences. To
mitigate this limitation, various methodologies have been de-
veloped to divide the input into segments and apply a slid-
ing window approach to manage the context. One such ap-
proach is structured prompting [Hao et al., 2022], which
groups demonstration examples and encodes them individ-
ually with well-designed position encoding. These encoded
examples are then collectively attended to by the test example
through a re-scaled attention mechanism, ensuring that each
segment receives adequate focus and relevance. Building on
the idea of segmenting input, Ratner et al. [2023] introduces
a parallel context window (PCW), which segments the long-
context into chunks and restricts the attention mechanism to
operate exclusively within each window. By redeploying po-
sitional encoding across these windows, this method ensures
efficient processing of long sequences without overwhelm-
ing the attention mechanism. Another innovative approach is
StreamingLLM [Xiao et al., 2024], which addresses the “at-
tention sink” phenomenon. This phenomenon occurs when
a significant portion of the attention score is allocated to the
initial tokens, regardless of their relevance. StreamingLLM
merges window context with the first token, which enables
the LLMs trained with a finite-length attention window to be
effectively generalized to infinite sequence lengths without
requiring additional fine-tuning.

Prompt Compression. Prompt compression refers to
methods that shorten original prompts while keeping the im-
portant information. This process involves either condensing
extensive prompt inputs or learning concise representations of
prompts. LLMLingua [Jiang et al., 2023a] employs stream-
lined and proficient language models, such as GPT-2 small
or LLaMA-7B, to identify and eliminate extraneous tokens
within prompts. This method facilitates the efficient execu-

tion of inferences with expansive language models, achieving
a compression ratio of up to 20 times while maintaining per-
formance with minimal decline. Building on this approach,
LongLLMLingua [Jiang et al., 2023b] addresses the inherent
“lost in the middle” issue observed in LLMs, enhancing the
processing of long-context information. This method not only
reduces costs but also improves efficiency through prompt
compression, resulting in a significant improvement of up to
21.4% in retrieval-augmented generation performance while
using only a quarter of the tokens. Further advancing the
field, Li et al. [2023b] introduce a novel method called “Se-
lective Context”. This approach systematically identifies and
prunes redundancy within the input context to streamline the
input, making it more compact and optimizing the overall ef-
ficiency of language model inferences. MemGPT [Packer et
al., 2023] is then proposed to overcome the limitations of
fixed-length context windows in traditional LLMs. The pri-
mary goal is to simulate an infinite context while still effec-
tively utilizing fixed-context models. MemGPT achieves this
by autonomously managing its own memory through “func-
tion calls” allowing for dynamic context modifications during
a task. It establishes a memory hierarchy, akin to traditional
operation systems, and treats context windows as constrained
memory resources. By enabling the LLM to control its con-
text, MemGPT provides an illusion of longer context length.

3 Attention Approximation
The foundation of attention approximation lies in the am-
bition to reduce the computation and memory complexities
of vanilla self-attention [Vaswani et al., 2017], which in-
creases quadratically with respect to the sequence length n,
i.e., O(n2). This can be achieved by approximating the full-
rank attention map with a low-rank counterpart, exploiting
the sparse patterns in the attention layers, or simplifying the
softmax-related complexity of vanilla attention. These tech-
niques aim to provide efficient approximations that maintain
the effectiveness of the attention mechanism while managing
long sequences more efficiently.

Low-rank Decomposition. The transformer architecture
utilizes a self-attention mechanism that involves three ma-
trices, namely, Query (Q), Key (K), and Value (V). The
attention mechanism works by computing the similarity be-
tween the Q and K and the result is used to weight the V,
emphasizing the the most relevant information. The low-
rank decomposition method can make the attention compu-
tation more efficient by reducing the number of parameters in
the matrices. One such approach is Linear Encoder-Decoder
(LED) [Winata et al., 2020], which is proposed to decompose
each of the three matrices into smaller matrices by adding an
encoder and decoder before and after the self-dot-product to
reduce the matrix size for approximation of linear parame-
ter efficiency. Different from LED, Linformer [Wang et al.,
2020] introduces another linear projection mechanism that
adds two smaller matrices before K and V to project them
to a smaller size while leaving Q unchanged. Both methods
optimize matrix computation through linear approximation.
Autoformer [Wu et al., 2021] further improves the ability
of capturing long-term dependency by introducing an auto-
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correlation mechanism that leverages the Fast Fourier Trans-
form (FFT) for time series decomposition. The decomposed
matrix is then utilized for time series analysis, which enables
the model to better capture and improve forecasting accu-
racy for long-term contexts. Deep neural networks (DNNs)
have also been utilized for tensor decomposition in transform-
ers. In particular, unlike traditional methods such as singular
value decomposition, Deeptensor [Saragadam et al., 2022]
uses a DNN to learn an optimal regularizer for tensor decom-
position when the distributions of the tensor is non-Gaussian.

Sparse Pattern. An alternative strategy to address the com-
putation and memory challenges of the self-attention module
in transformers involves leveraging sparse patterns to handle
long contexts effectively. These patterns use a sparse atten-
tion matrix, where each token attends to a limited set of other
tokens. Various methods have been proposed to introduce the
sparsity, which, while not specifically designed for long con-
texts, can effectively help manage long sequences.

Among the most straightforward yet practical instances of
sparse patterns, Block-wise Self Attention [Qiu et al., 2020],
stands out as an illustrative demonstrations. This method re-
duces the computation and memory cost by chunking the in-
put sequence into fixed blocks. An alternative strategy in-
volves having an individual token attend to tokens at reg-
ular, fixed internals. For instance, Longformer [Beltagy
et al., 2020] is a sparsifying mechanism that utilizes di-
lated windows of tokens to construct the attention matrix.
LogSparse [Li et al., 2019] is another method that spar-
sifies the attention matrix by restricting consideration to a
limited window of tokens, where the window is defined by
exponential steps from the token itself. This approach en-
sures a targeted focus range for each individual token. By
employing LogSparse, it is guaranteed that any pair of to-
kens can exchange attention information with each other,
while the memory usage of the transformer can be reduced
to O(n(Log n)2). LongNet [Ding et al., 2023] introduces
dilated attention, in which attention allocation decreases ex-
ponentially as the distance between tokens increases. This
approach exploits mixed dilated rates to accommodate both
local and global dependencies between different tokens. It
has been shown that by utilizing LongNet, a linear computa-
tion complexity, O(n), and a logarithm dependency between
tokens can be achieved.

Some other sparse transformers consider adaptive sparse
patterns which are not dependent on the location of the to-
kens, but rather they rely on other dynamic factors such as
embedding values or task-specific parameters. For instance,
Routing Transformer [Roy et al., 2021] exploits dynamic key-
value pairs to infer sparsity patterns and hence, it removes the
computation and memory requirements of attending to con-
tent unrelated to the query of interest. In particular, Routing
Transformer utilizes k-means clustering to define the k most
relevant columns in Q and K, and assigns each query to the
keys within the same cluster. Routing Transformer results in
computation complexity of the order O(n1.5). Reformer [Ki-
taev et al., 2020] is another sparse approach which clusters
the tokens prior to implementing attention, and it does so ac-
cording to a hash-based similarity.

Softmax-free Attention. The efficacy of vanilla atten-
tion [Vaswani et al., 2017] is often attributed to the softmax
operation, which is important for capturing long dependen-
cies. However, this operation causes quadratic complexity in
both time and space, impeding the scalability of transformers
for long sequences. Replacing the softmax operation can re-
duce computational complexity, enhancing the efficiency of
processing long sequences. This category of approaches is
called softmax-free attention.

CosFormer [Qin et al., 2022] emulates softmax behaviors
through a linear operatorthat re-weights the cosine-based dis-
tance. SOFT [Lu et al., 2021] employs a Gaussian kernel
function to replace the softmax, while SIMA [Koohpayegani
and Pirsiavash, 2024] opts for normalizing query and key ma-
trices using a simple L1-norm. Another set of approaches
replaces softmax with the ReLU function for normalization,
demonstrating that this substitution maintains performance,
while preserving linear scalability [Shen et al., 2023]. An
alternative class of architectures centers around generalized
kernelziable attention, wherein the conventional attention
mechanism is formulated as a specific kernel function. For in-
stance, Performer [Choromanski et al., 2021] is an approach
leveraging positive orthogonal random features to effectively
model the attention mechanism into simplified softmax-free
architecture with linear space and time complexity.

Another recently-developed transformer architecture that
can be studied under this category (to varying degrees) is Ret-
Net [Sun et al., 2023c], which replaces the softmax operation
with a D-matrix followed by group normalization (Group-
Norm). The D-matrix introduces exponential decay weight-
ing of previous tokens, diminishing the impact of distant to-
kens. The incorporation of GroupNorm adds non-linearity, a
characteristic once inherent in softmax. A distinguished fea-
ture of RetNet is that it can be implemented in both parallel
and sequential manners. Accordingly, it can exploit the accel-
erated token generation during inference, similar to Recurrent
Neural Networks (RNN), and exploit the efficiency of paral-
lelization during training.

4 Attention-free Transformers
Attention-free transformers refer to the computational ap-
proaches that provide dependency information between to-
kens without relying on the conventional attention mecha-
nism. These mechanisms offer a different perspective on de-
pendency calculation, while maintaining sub-quadratic mem-
ory complexity. In this study, we consider two distinct sub-
categories of this domain, namely, State Space Model (SSM)
and positional-dependency attention—that enhance the han-
dling of long contexts in LLMs.

State Space Model. SSM is a statistical sequence-to-
sequence (seq2seq) model that employs linear projections
of hidden states to compute the output sequence based on
an input sequence. SSM introduces an RNN-like seq2seq
model without non-linearity, which empowers parallel train-
ingand optimize the inference efficiency. The seq2seq op-
eration based on the states can be analytically unrolled, re-
sembling a convolutional operation with a parametrized ker-
nel. Theoretically, similar to RNN, this convolution opera-
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tion can extend to infinite length, enabling the computation
of outputs without calculating individual states. During the
training phase with the entire input sequence, this convo-
lution process can be exceptionally rapid and parallel, set-
ting it apart from the traditional RNN. However, the com-
putational expense of the convolution kernel limits SSM’s
application in deep learning until the advent of Structured
State Space (S4) [Gu et al., 2022]. S4 integrates SSM,
HIPPO [Gu et al., ], and structured matrices to solve the
complexity of the convolution kernel. HIPPOO [Gu et al.,
] is a particular representation of the original SSM, which
takes input states and maps them to higher-dimensional states
that can be seen as an online compression of history. How-
ever, with a finite size of states, this method cannot re-
member the entire input. This necessitates the introduc-
tion of exponential decay, particularly beneficial for recent
past accuracy. Some approaches employ decay techniques,
showcasing performance improvements [Orvieto et al., 2023;
Ma et al., 2023b]. Hungry Hungry Hippos (H3) [Fu et al.,
2023] incorporates two SSMs, enabling local token attention
and global token recall through a multiplicative gate mecha-
nism, akin to LSTM gating. Hyena [Poli et al., 2023], similar
to H3, replaces the attention layer by interleaving implicitly
parametrized long convolutions and data-controlled gating,
effectively narrowing the quality gap with the vanilla atten-
tion mechanism at scale and achieving comparable perplexity
with a reduced computational cost. Mamba [Gu and Dao,
2023] enhances SSMs by incorporating H3 with multi-layer
perceptrons (MLP), refining reasoning capabilities through a
strategic reorganization of the gating mechanism.

Position-dependent Attention. Within this distinct cate-
gory, a unique form of dependency calculation emerges,
where dependencies rely on the position of tokens rather than
interactions between them. The Attention-free Transformer
(AFT) [Zhai et al., 2021], inspired by attention-based trans-
formers, exclusively employs K and V while eliminating
Q and its dot product with K. Instead, AFT introduces a
novel learnable matrix W, which acts as a fixed attention
map (static routing) consistent across all input sequences.
Unlike adaptive weighting in vanilla attention, W considers
only pairwise token positions, disregarding semantic depen-
dencies. To enhance customization based on current input
data, K accompanies W.

Building upon the principles of AFT, Receptance Weighted
Key Value (RWKV) architecture [Peng et al., 2023a] adopts
a similar approach with modifications to interaction weights
for simplicity, and redefines W as a linear time decay of a
vector with a much smaller size. RWKV provides the flexi-
bility to formulate a seq2seq model as either a transformer or
an RNN, similar to what we observe in RetNet. This proves
advantageous for parallelizing computations during training
using the transformer form of RWKV while maintaining con-
sistent computational and memory complexity during infer-
ence through the RNN form, without limitations on sequence
length. Although both AFT and RWKV imply trade-offs
between performance and complexity, RWKV emerges as
a practical alternative for dot-product transformers with the
ability to scale up to very large models.

5 Model Compression
An alternative approach that can enable LLMs to support
longer sequences is model compression. Various model com-
pression approaches have distinct focal points. Some concen-
trate on minimizing the size of the LLM architecture by elim-
inating redundant weights, thereby reducing computational
and memory requirements. Some others prioritize decreasing
computation precision to alleviate computational complexity.
Furthermore, certain approaches emphasize enhancing mem-
ory efficiency and optimizing data storage methods. In this
section, we explore methods that exert a more significant im-
pact on accommodating longer input sequences.

Quantization. Quantization has been considered as a
promising approach for improving the computational time
and energy efficiency of generic neural networks. Moreover,
neural networks are robust enough to be quantized to lower
bit-widths with a relatively small impact on the accuracy of
the network [Gholami et al., 2022]. That provides an in-
sight into utilizing quantization to reduce the complexity of
LLMs, and accordingly, enabling them to support longer in-
put sequence [Zhu et al., 2023]. Depending on the stage at
which quantization is implemented, quantization techniques
for LLMs can be classified as Quantization-Aware Training
(QAT) and Post-Training Quantification (PTQ).

In QAT approach, the quantization is integrated into the
training phase such that the network can be adapted to quan-
tization effects. This adaptation helps mitigate the potential
loss of accuracy that might occur as a result of quantiza-
tion during the inference phase. However, applying QAT to
LLMs can be challenging due to the computational cost and
the latency, as QAT requires training over the whole train-
ing dataset to avoid significant accuracy degradation. LLM-
QAT [Liu et al., 2023b] addresses this issue by proposing
data-free knowledge-distillation, in which the data generated
by the LLM itself is used for knowledge distillation. As
the proposed approach can retain the distribution of the non-
quantized (original) output, it can be applied to any generative
model, independent of the original training dataset.

On the other hand, PTQ involves reducing the precision
of the weights and activations of a neural network after the
completion of the training phase. The primary goal of PTQ is
to reduce the memory and computational requirements of the
model, making it more suitable for deployment on resource-
limited devices. PTQ is simple and efficient, however, it can
impose performance degradation due to the low precision.
With the existing trade-off between the model size, computa-
tion speed and accuracy, this method can be used to improve
the efficiency of LLMs without extensive training efforts.

The PTQ approaches can be categorized into weight-only
quantization, which only focuses on quantizing the weights
and weight-activation quantization, which quantizes both
weights and activations. LLM.int8() [Dettmers et al., 2022]
is the first multi-billion-scale INT8 quantization procedure
that reduces memory usage by half during inference, while
it maintains the performance the same as that in the full-
precision model. OPTQ [Frantar et al., 2023] proposes a
layer-wise quantization technique, which can further reduce
the precision to 3 or 4 bits per weight element, with negli-
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gible accuracy degradation. Furthermore, Lin et al. [2024]
find that weights do not carry equal importance for the perfor-
mance, and accordingly, the quantization error can be signif-
icantly reduced by maintaining only 1% of salient weights in
full-precision. They propose Activation-aware Quantization
(AWQ) method, which retains the weights corresponding to
large activations in full-precision. In order to address the sig-
nificant quantization error resulted from the outliers in activa-
tions distribution, Lee et al. [2024] propose a mixed-precision
quantization approach, namely, outlier-aware weight quanti-
zation (OWQ), which applies higher precision to the weights
associated with outlier activations.

Pruning. Pruning refers to reducing the size of LLMs by
removing redundant parameters that are less crucial for the
models. Pruning can help optimize the model for deployment
and make the model more efficient in terms of computation
complexity and memory usage. Accordingly, pruning can be
considered as an approach to enable a language model to sup-
port longer sequence length, while maintaining the desirable
complexity and performance. In general, pruning a model can
be categorized into structured and unstructured pruning.

Structured pruning aims at removing higher-granularity
structures, such as entire neurons, layers, or rows/columns
of weight matrices, which can result in a model that re-
tains its original structure but with fewer parameters. LLM-
Pruner [Ma et al., 2023a] is a structural task-agnostic prun-
ing approach that selectively removes non-critical connection
structures by considering both first-order information and an
approximated Hessian information gradient information. Al-
ternatively, Sheared LLaMA [Xia et al., 2024] uses a two-
stage approach for pruning an LLM. In the first stage, it ap-
plies targeted structured pruning to shape the model by re-
moving layers, heads, and intermediate connections. In the
second stage, the batches of data are loaded dynamically
and the model structure is modified in each training itera-
tion based on losses in various domains. As a result, Sheared
LLaMA achieves a compressed model that can outperform
the LLMs, with the same size but trained from scratch.

Unstructured pruning involves with pruning individual pa-
rameters of a model independently based on their magnitudes
or importance, resulting in an irregular sparse structure. Due
to the irregularity in the structure and in the memory access
patterns, unstructured pruning hinders the efficiency gain that
might be achieved through structured pruning, and it requires
specialized software and/or hardware for efficient deploy-
ment. SparseGPT [Frantar and Alistarh, 2023] compresses
LLMs with billions of parameter by as much as 60%, al-
most without affecting the performance of the models. How-
ever, SparseGPT heavily relies on weight updates. To address
this issue, Sun et al. [2023a] propose Wanda that prunes the
weights according to novel criterion, which is mainly based
on product value of the weights and their input activations.

Multi-query and Group Attention. While multi-head at-
tention has demonstrated its effectiveness in characterizing
the correlations among tokens, it suffers from the incremen-
tal memory bandwidth cost and longer latency during in-
ference due to repeatedly loading the large KV tensors as
the input sequence length increases. Multi-query attention

(MQA) [Shazeer, 2019] is one of the approaches that ad-
dress the aforementioned issue. In particular, MQA essen-
tially reuses the same KV tensors across all attention heads
of each query to reduce the memory bandwidth requirements
during decoding and thus, allows longer sequences and faster
decoding. Given its demonstrated performance with minor
quality degradation, MQA has been adopted in several works.
Google [Chowdhery et al., 2024] trains a LLM named Path-
ways Language Model (PaLM) with the adoption of MQA to
improve decoding speed and later PaLM-2 [Anil et al., 2023]
is released with improved computation efficiency. Pope et
al. [2023] propose a partition-optimized model that enables
up to 32× larger context lengths with the help of MQA on
LLMs. de Jong et al. [2023] adopts MQA to reduce the cross-
attention computation at the decoders in Fusion-in-Decoder
models with faster inference. More recently, Li et al. [2023a]
introduce StarCoder, a Code LLM, with fast large-batch in-
ference enabled by MQA. The shared KV tensors idea in
MQA also inspired the emergence of other attention compu-
tation schemes. A grouped-query attention (GQA) [Ainslie
et al., 2023] mechanism is proposed to trade-off performance
degradation and speed by sharing a subset of KV tensors.

6 Hardware-aware Transformers
A viable solution to challenges posed by long sequence in
LLMs involves adapting algorithms to be hardware-aware,
enhancing efficiency and enabling the processing of longer
sequences. Our exploration encompasses a spectrum of in-
novations, each tailored to address distinct aspects of IO-
awareness, resource management, multi-device distributed
attention, and memory management.

IO-awareness and Resource Management. A critical
concern in deep neural network models like transformers is
the constant need for Read/Write operations from/to memory.
FlashAttention [Dao et al., 2022] addresses this challenge by
making attention algorithms IO-aware, effectively managing
reads and writes between different levels of GPU memory.
This approach capitalizes on the insight that the softmax ma-
trix in attention can be computed without materializing the
entire matrix, utilizing tiling techniques. FlashAttention in-
troduces parallelization over sequence length, processing dif-
ferent portions (blocks) of the sequence to compute atten-
tion in a more manageable block-wise operation within fast
memory Static Random Access Memory (SRAM) in GPUs.
Moreover, FlashAttention highlights the efficiency gains of
recomputing attention during the backward pass of optimiza-
tion. It utilizes blocks already present in SRAM instead of
storing attention results in high bandwidth memory (HBM)
and transferring them to SRAM again. Building on FlashAt-
tention foundations, Block-wise Parallel Transformer (BPT)
[Liu and Abbeel, 2023] fuses the feedforward layer with self-
attention to further minimize IO usage, enabling the model to
handle sequences up to four times longer than FlashAttention.

This IO-aware approach is not exclusive to attention-based
transformers; similar techniques have been applied to expe-
dite SSMs. SSMs, emerging as alternatives to transformers
due to linear scalability and convolution implementation fea-
sibility, present challenges in convolution-dominated com-
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putation time during training. FlashConv [Fu et al., 2023]
addresses this by leveraging the Cooley-Tukey decomposi-
tion of the FFT into a series of diagonal matrix multiplica-
tion, to take advantage of fast tensor cores. To accommodate
longer sequences, FlashConv utilizes the recurrent properties
of SSMs, allowing convolution to occur in different portions
sequentially. Mamba [Gu and Dao, 2023] further enhances
SSMs through innovative techniques such as kernel fusion,
parallel scan, and recomputation, leveraging modern acceler-
ators like GPUs for efficient memory hierarchy utilization.

Multi-device Distributed Attention. Both FlashAttention
and BPT leverage distinct streaming multiprocessors in GPUs
for parallel processing of different blocks. However, the lim-
ited size of SRAM imposes constraints on sequence length.
Encouragingly, this concept can be expanded to accommo-
date very long sequences by distributing attention compu-
tation across multiple GPUs, as proposed by Ring Atten-
tion [Liu et al., 2023a]. This innovative approach enables
block-wise self-attention computation, seamlessly overlap-
ping communication of key-value blocks among devices with
the computation of each block on devices. As a result, it fa-
cilitates the processing of sequences several times longer than
BPT, showcasing scalability across the device count. Another
example of distributing attention computation across multi-
ple devices is demonstrated by LongNet [Ding et al., 2023].
LongNet possesses the capability to compute multiple atten-
tions, each with a distinct dilated sparsity pattern. These com-
putations operate independently and can be distributed over
multiple devices, with each device corresponding to a single
dilated pattern. This collective approach facilitates the pro-
cessing of longer sequences.

Memory Management. Effective memory management is
vital in LLMs, especially during the autoregressive inference
phase. The sequential generation of tokens, repeated for each
request, leads to a memory-bound workload, limiting GPU
utilization and serving throughput. To enhance throughput,
batching multiple requests requires efficient memory man-
agement, specifically for Key-Value (KV) caches. The dy-
namic nature of KV cache growth and its unpredictable life-
time necessitate adaptive strategies for optimal memory uti-
lization in varying context lengths.

PagedAttention [Kwon et al., 2023] employs a virtual
memory-inspired strategy during the inference phase to tackle
the memory-bound challenges inherent in sequential genera-
tion. By segmenting KV caches into blocks, this approach
achieves flexible memory management, effectively mitigating
both internal and external fragmentation issues. In the pursuit
of attention acceleration during inference, Flash-Decoding
[Dao et al., 2023] builds upon FlashAttention principles. In-
troducing a new parallelization dimension for keys/values
sequence length, it ensures optimal GPU utilization even
with small batch sizes and large context lengths. This ap-
proach proves instrumental in achieving up to 8× faster gen-
eration for very long sequences. Additionally, other meth-
ods enhance memory management efficiency. FlashDecod-
ing++ [Hong et al., 2023], for instance, goes one step further
by eliminating the need for synchronization in handling par-
tial softmax computations, effectively addressing a limitation

observed in prior works.
Another notable memory management technique is LLM-

in-Flash [Alizadeh et al., 2023], which leverages the larger
size of flash memory compared to Dynamic Random Access
Memory (DRAM). This method runs an LLM during infer-
ence efficiently by storing model parameters in flash mem-
ory and bringing them to DRAM on demand. To balance the
lower bandwidth of Flash memory, the paper introduces an in-
ference cost model considering flash memory characteristics.
The technique incorporates sparsity awareness in feedforward
layers and context-adaptive loading of the model. Although
not specifically used to increase sequence length, this method
has the potential to load a model up to twice the size of the
available DRAM. This capacity could be harnessed to han-
dle longer sequences while ensuring practical data transfer
between DRAM and flash memory.

7 Conclusion and Future Directions
In this survey, a systematic review of different approaches
for efficiently extending the sequence length in LLMs is pro-
vided. We start with the motivation of the work and the neces-
sity of handling long sequences by LLMs. We then discuss
the methods that encompass architectural changes, such as
positional encoding modification, and attention mechanism
modification,designed to improve long sequences handling
without significantly increasing the computational cost. We
further explore the methods that can be applied to different
phases, such as training, fine-tuning and inference, which ef-
ficiently improve the LLM’s capability of processing long se-
quences. These techniques not only address the immediate
challenges posed by sequence length limitations but also pave
the way for more complex and contextually aware LLMs.

Despite these advancements, challenges related to compu-
tational cost, model interpretability, and the ability to inte-
grate external knowledge remain prevalent. The trade-offs
between model complexity, processing speed, and accuracy
continue to be a pivotal consideration in the design and im-
plementation of LLMs for long sequences. Future research
could focus on further optimizing the architecture of LLMs
to enhance their efficiency in processing long sequences. In-
novations could involve developing attention mechanisms or
network structures that can handle long sequences more ef-
fectively while not increasing the computational cost. In ad-
dition, integrating LLMs with external knowledge could im-
prove their ability in understanding and generating longer co-
herent and contextually accurate sequences. Exploring meth-
ods for effective knowledge integration and retrieval during
the language generation process would be beneficial, too.
Moreover, new training methodologies can be investigated to
improve the ability of the model to understand and retain in-
formation over longer sequences. Techniques such as curricu-
lum learning, where models are gradually exposed to increas-
ingly longer sequences during training, could be one direction
to explore. Last but not least, there is also a need for compre-
hensive benchmarking and evaluation frameworks that could
accurately examine the capabilities of LLMs in handling long
sequences. This includes creating datasets that specifically
challenge the long-context processing capabilities of LLMs.
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