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Abstract
Federated learning (FL) revolutionizes distributed
machine learning by enabling devices to collabora-
tively learn a model while maintaining data privacy.
However, FL usually faces a critical challenge
with limited labeled data, making semi-supervised
learning (SSL) crucial for utilizing abundant un-
labeled data. The integration of SSL within the
federated framework gives rise to federated semi-
supervised learning (FSSL), a novel approach that
exploits unlabeled data across devices without
compromising privacy. This paper systematically
explores FSSL, shedding light on its four basic
problem settings that commonly appear in real-
world scenarios. By examining the unique chal-
lenges, generic solutions, and representative meth-
ods tailored for each setting of FSSL, we aim to
provide a cohesive overview of the current state of
the art and pave the way for future research direc-
tions in this promising field.

1 Introduction
Federated learning (FL) [Li et al., 2023b] is an advanced
framework that enables multiple clients to collaboratively
train a shared global model with help of a server while keep-
ing their data local, thus prioritizing data privacy and secu-
rity [Yin et al., 2022; Zhang et al., 2023d]. This distributed
learning paradigm is increasingly recognized for its capability
to mitigate challenges across various sectors, including edge
computing [Nguyen et al., 2021] and healthcare [Nguyen et
al., 2023], where data privacy is paramount. However, tra-
ditional FL approaches often assume the availability of fully
labeled datasets, an assumption that rarely holds in practice.
Given real-world constraints such as lack of time, expertise,
or motivation, users often leave large portions of data unla-
beled [Jin et al., 2023].

Addressing these practical challenges necessitates a shift
towards federated semi-supervised learning (FSSL). Semi-
supervised learning (SSL), successful in centralized settings,
employs both labeled and unlabeled data by exploiting the
latent information within the latter to enhance model perfor-
mance [Yang et al., 2023]. Transferring these SSL strate-
gies to the federated paradigm yields FSSL, which aims to

leverage both labeled and unlabeled data in a federated con-
text. FSSL can thus enhance model efficacy in real-world
applications where labeled data is scarce, maximizing the use
of abundant yet underexploited unlabeled data in federated
learning environments.

Integrating SSL into the FL framework introduces mul-
tifaceted challenges. First, FL’s decentralized architecture,
which safeguards data privacy by keeping data on multiple
local clients, impedes the direct application of conventional
SSL methods due to restricted access to global data. Sec-
ond, the non-IID (independently and identically distributed)
nature of FL data complicates the effective use of SSL, as bi-
ased data distributions can negatively affect label predictions.
Third, the distribution of labeled and unlabeled data across
the server and clients introduces varying scenarios, each ne-
cessitating tailored algorithmic approaches. Different con-
figurations of labeled/unlabeled data locations demand dis-
tinct algorithmic solutions to address the specific challenges.
Thus, the incorporation of SSL into FL motivates the devel-
opment of novel strategies to overcome these obstacles.

Despite the accelerated progress recently observed in
FSSL, there is still a noticeable absence of a comprehen-
sive survey. Therefore, to elucidate the intersection of these
two impactful paradigms, we conduct a systematic examina-
tion of FSSL methodologies, aiming to integrate the privacy-
preserving features of FL with the efficiency of SSL in uti-
lizing unlabeled data. First, we outline several common and
basic problem settings in FSSL with clear illustrations. Sec-
ond, we delve into each scenario, analyzing its unique chal-
lenges, presenting a general solution framework, and review-
ing some representative works published in prestigious jour-
nals and conferences. Third, we identify existing research
gaps and propose potential trajectories for future exploration
in the promising domain of FSSL. We recognize that a recent
survey [Jin et al., 2023] investigates FL from a broader per-
spective of label efficient learning. However, our work stands
apart by narrowly concentrating on FL specifically within the
SSL framework, offering a more detailed analysis.

2 Preliminaries
2.1 Federated Learning
Federated learning is designed to train machine learning mod-
els using data distributed across various participants, with the
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primary goal of safeguarding data privacy. In a classic feder-
ated learning setting, a shared global model is trained across
multiple devices, often referred to as clients, ensuring the pri-
vacy of their local data. Instead of sending data to a central-
ized server, the learning happens directly at the client level.
Depending on how the data is split across participants, FL can
be categorized into horizontal federated learning (HFL) and
vertical federated learning (VFL). In HFL, all clients possess
data with identical feature spaces, such as images from dif-
ferent users. In VFL, however, clients hold data pertaining to
the same users but with different feature spaces, exemplified
by a bank and a retail company holding transaction records
and purchase history of the same users, respectively. In this
paper, following the majority of existing research efforts, we
primarily focus on HFL.

Formally, we assume a traditional FL scenario with N
clients, and each client i has its own local fully-labeled
dataset Di = {(xj

i , y
j
i )}

ni
j=1 with ni = |Di|. Then, the global

training objective is defined as follows,

min
θ

N∑
i=1

wiℓi(Di; θ). (1)

Here, local loss ℓi(Di; θ) represents how well the model fits
the local data Di, and the global loss is a weighted average of
all local losses. wi is the weight assigned to the i-th client,
which can be set as wi = ni∑N

i=1 ni
in FedAvg [McMahan

et al., 2017]. It ensures clients with more samples have a
proportionately greater influence on the global model.

The training procedure of FL typically involves multiple
communication rounds, each comprising two key phases: lo-
cal training and server aggregation. In the local training
phase, a subset of participants is chosen to receive the cur-
rent global model, which they then refine using their own
data. In the following server aggregation phase, these par-
ticipants transmit their updated model parameters back to the
server. The server aggregates these parameters and obtains an
updated global model for the next communication round.

2.2 Semi-supervised Learning
Semi-supervised learning (SSL) leverages both a small
amount of labeled data and a large amount of unlabeled data
during training. It is an effective way to improve learning
accuracy without the need for fully labeled datasets. Given
the training dataset D = L ∪ U with limited labeled sam-
ples L = {(xi, yi)}ni=1 and abundant unlabeled samples
U = {xi}mi=1 (m ≫ n). Then the overall training objective is
defined as follows,

min
θ

∑
(xi,yi)∈L

ℓs(xi, yi; θ) + λ
∑
xi∈D

ℓu(xi; θ). (2)

Here, ℓs denotes the per-example supervised loss, e.g., cross-
entropy for classification, ℓu denotes the per-example unsu-
pervised loss, and λ is the trade-off parameter.

Several SSL methods are widely adopted in the literature.
Pseudo-label [Lee and others, 2013] employs the class pre-
diction with the highest probability that surpasses a prede-
fined confidence threshold as the pseudo-label ŷi for unla-
beled samples. These pseudo-labels are subsequently utilized

Figure 1: All possible FSSL settings.

(a) Label-at-all-clients Case (b) Label-at-partial-clients Case

(c) Label-at-server Case (d) Unlabel-at-server Case

Figure 2: Four basic problem settings in FSSL.

for supervised training on the unlabeled data, formulated as
ℓu(xi; θ) = ℓl(xi, ŷi; θ). Consistency regularization enforces
the predictions from the augmented examples and original in-
stances to output the same class label [Xie et al., 2020].

3 Problem Settings in FSSL
Incorporating SSL into FL renders the problem more intri-
cate and multifaceted. Figure 1 sketches the various common
scenarios that often arise in real-world applications. For sim-
plicity’s sake, we make the following assumptions for FSSL.

1. All clients hold data, either labeled, unlabeled, or both.

2. The server can possess data as well.

3. The system as a whole must contain a mix of labeled and
unlabeled data, excluding solely one data type.

For the first assumption, clients without data do not ac-
tively contribute to the learning process. For the second, the
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server may hold labeled or unlabeled data, which can im-
prove model performance. We simplify by not considering
the server holding both data types, treating it as a simple com-
bination of the two scenarios. The third assumption aligns
with the semi-supervised framework. We concentrate on four
basic FSSL scenarios based on the locations of labeled and
unlabeled data (Figure 2), treating other situations as combi-
nations of these. We consider a system with N clients.

• Label-at-all-client All the data are located on the client
side D = {Di}Ni=1 and each client has both labeled and
unlabeled data Di = Li ∪Ui. Here, Li = {(xj

i , y
j
i )}

ni
j=1

with ni = |Li| and Ui = {xk
i }

mi

k=1 with mi = |Ui|.
• Label-at-partial-client All the data are located on the

client side, but some clients only have labeled data while
the remaining ones have unlabeled data D = {Dl

i}
Nl
i=1 ∪

{Du
i }

Nu
i=1 with Nu+Nl = N . Here, Dl

i = {(xj
i , y

j
i )}

ni
j=1

with ni = |Dl
i| and Du

i = {xk
i }

mi

k=1 with mi = |Du
i |.

• Label-at-server All the data are located on both the
client and the server sides D = Ds ∪ {Di}Ni=1. The
server has the labeled data only Ds = {(xj

s, y
j
s)}

ns
j=1

with ns = |Ds| while each client has the unlabeled data
only Di = {xk

i }
mi

k=1 with mi = |Di|.
• Unlabel-at-server All the data are located on both the

client and the server sides D = Ds ∪ {Di}Ni=1. The
server has the unlabeled data only Ds = {xk

s}
ms

k=1 with
ms = |Ds| while each client has the labeled data only
Di = {(xj

i , y
j
i )}

ni
j=1 with ni = |Di|.

4 Approaches to FSSL
4.1 Label-at-all-client Case
Unique Challenges and Generic Solution Framework
This case is the most prevalent scenario, and it incorporates
the semi-supervised learning setting into the traditional fed-
erated learning system in a most straightforward manner.
Label-at-all-client case is widely applicable in real-world sit-
uations. For example, consider a company aiming to develop
an object detection FL model using smartphone-captured im-
ages. The company has no access to the local data of users,
and only users can annotate their images. However, it is com-
mon for users to refrain from labeling every image, resulting
in a scenario where all clients possess partially labeled data,
epitomizing the “label-at-all-client” setting.

A naive solution to this case involves applying existing off-
the-shelf semi-supervised learning techniques at each client,
coupled with the use of federated learning algorithms to ag-
gregate the locally trained weights back to the server. The
detailed training procedure is shown in Algorithm 1 and the
training objective can be formulated as

min
θ

N∑
i=1

wi

 ∑
(xi,yi)∈Li

ℓs(xi, yi; θ) + λ
∑

xi∈Di

ℓu(xi; θ)


︸ ︷︷ ︸

ℓi(Di;θ)

.

However, this approach does not fully exploit the knowl-
edge of the multiple models trained on heterogeneous data

Algorithm 1 Generic label-at-all-client FSSL framework
Input: Initialized model parameters θ = θ1

1: for communication round t = 1 to R do
2: Randomly select a subset of clients Ct ⊆ {1, . . . , N}.
3: for each selected client i ∈ Ct in parallel do
4: Train a local model θti with Di and θt using SSL.
5: end for
6: Server aggregates weights {θti}i∈Ct and updates θt+1.
7: end for

distributions. The client heterogeneity makes the simple com-
bination of SSL and FL algorithms suffer severely from slow
convergence and performance degradation. This heterogene-
ity manifests in two primary forms: statistical and system.
The former refers to the prevalence of non-IID data, which
undermines algorithmic convergence as many FL algorithms
(e.g. FedAvg) are inefficient in dealing with this issue. As
for the latter, the clients may have varied system capabili-
ties and computational resources, which can lead to inconsis-
tent client participation and exacerbate the straggler problem,
where slower clients delay overall progress, thereby signifi-
cantly reducing the speed of the learning algorithm.

Representative Methods
FedMatch [Jeong et al., 2021] is the first to improve upon
naive combinations of FL and SSL. It incorporates an inter-
client consistency loss to encourage the same predictions
across clients. Additionally, FedMatch divides the model pa-
rameters into two sets: one dedicated to supervised learning
and the other to unsupervised learning. This disjoint learn-
ing reduces the communication overhead. FedMatch is even
designed with flexibility, allowing easy adaptation to the fol-
lowing label-at-server case.

FedAvg-DS [Nandury et al., 2021] builds upon the foun-
dational FedAvg algorithm by introducing a sophisticated ag-
gregation mechanism that accounts for the diversity in up-
dates from clients.This enhancement is particularly effective
when it is combined with existing SSL methods, addressing
the issue of client heterogeneity.

FedTriNet [Che et al., 2021] first pretrains the model on
the labeled data using FedAvg and then utilizes a dynamic
quality control mechanism to generate high-quality pseudo
labels of the unlabeled data for retraining [Lin et al., 2021].

FedFAPL [Wei and Huang, 2022] derives a fairer feder-
ated model across all clients. It strategically balances the
involvement of active unlabeled samples (AUS) in the local
model training. By setting global numerical restrictions on
AUS participation and then allocating these restrictions into
personalized local constraints for each client, FedFAPL facil-
itates more effective local pseudo-labeling.

FedGAN [Zhao et al., 2022] adapts the Triple GAN archi-
tecture [Li et al., 2017], originally designed for conventional
SSL, to the FL context. It consists of three generators and
one discriminator to learn the relationship between labeled
and unlabeled data effectively. Importantly, FedGAN dynam-
ically adjusts aggregation weights of local models based on
optimization difficulty posed by non-IID data distributions.

F2CMT [Wen et al., 2022] improves over the mean teacher
model [Tarvainen and Valpola, 2017], a popular consistency
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Representative
Methods

SSL
Techniques

Data
Heterogeneity

Data
Privacy

Communication
Efficiency Advantanges Disadvantages

FedMatch [Jeong et al., 2021] Consistency
regularization ✗ ✗

Parameter
decomposition First work Information leakage

FedAvg-DS [Nandury et al., 2021] ✗ Diversity Scaling ✗ ✗ FedAvg extension Not specific for SSL

FedTriNet [Che et al., 2021] Pseudo-label ✗ ✗ ✗
High-quality
pseudo-label

Extra pre-training
overhead

FedFAPL [Wei and Huang, 2022] Pseudo-label Balancing #AUS ✗ ✗
Fair

accuracy parity
Extra communication

overhead
FedGAN [Zhao et al., 2022] SSL GAN Dynamic aggregation ✗ ✗ Robust Unstable training

F2CMT [Wen et al., 2022] Consistency
regularization ✗ ✗ ✗

Reliable targets
generation

Extra local
training overhead

FedCPSL [Wang et al., 2023b] Pseudo-label Client variance
reduction ✗ Local momentum Personalization Information leakage

DS-FL [Itahara et al., 2023] Consistency
regularization

Entropy reduction
average ✗

Model-output
exchange

Communication-
efficient

Extra local
training overhead

FedLoKe [Zhang et al., 2023a] Pseudo-label Local knowledge
enhancement ✗ ✗

Overfitting
prevention

Extra local
training overhead

Table 1: Comparison of different FSSL methods for the label-at-all-client case. ✗ denotes that the method does not focus on this issue.

regularization method, with a cross-clients ensemble module
and a model-wise self-ensembling module. F2CMT can yield
reliable teacher targets to guide the learning process of stu-
dent models on local clients.

FedCPSL [Wang et al., 2023b; Wang et al., 2023c] focuses
on model personalization within the FSSL framework. It in-
troduces novel strategies such as adaptive client variance re-
duction, local momentum, and normalized global aggregation
to combat the challenge of device heterogeneity. These strate-
gies are designed to enhance algorithm convergence, theoret-
ically achieving a sublinear convergence rate.

DS-FL [Itahara et al., 2023] exchanges model outputs in-
stead of model parameters, significantly enhancing commu-
nication efficiency, especially as model sizes increase. It also
presents a new model-output aggregation method designed to
be robust against the heterogeneity in model outputs caused
by non-IID data distributions.

FedLoKe [Zhang et al., 2023a] generates more accurate
pseudo-labels with local knowledge to boost the performance
of the global model in the non-IID scenarios. The local model
is also trained on the pseudo-label dataset generated by the
global model, transferring general knowledge to the local
model and preventing it from overfitting.

4.2 Label-at-partial-client Case
Unique Challenges and Generic Solution Framework
This case can be viewed as an extreme case of the previous
label-at-all-client case. In the conventional label-at-all-client
setting, each client is homogeneous, containing a mix of both
labeled and unlabeled data. In contrast, the label-at-partial-
client case now features heterogeneous clients: some possess
exclusively labeled data, while others have only unlabeled
data. Here, the “semi-supervised” aspect applies at the intra-
client level, with each client holding data that is either entirely
labeled or completely unlabeled.

The strategies effective in the label-at-all-client situation
often falter in the label-at-partial-client case due to the ex-
treme non-IID nature of client data. The division of la-
beled and unlabeled data across multiple clients prevents the
application of standard semi-supervised learning techniques

Algorithm 2 Generic label-at-partial-client FSSL framework
Input: Initialized model parameters θ = θ1

1: for communication round t = 1 to R do
2: Randomly select a subset of clients Ct ⊆ {1, . . . , N}.
3: for each selected client i ∈ Ct in parallel do
4: if client i is a labeled client then
5: Train a local model θti with Dl

i and the initialized θt.
6: end if
7: if client i is an unlabeled client then
8: Train a local model θti with Du

i and the initialized θt.
9: end if

10: end for
11: Server aggregates {θti}i∈Ct based on client type, gets θt+1.
12: end for

within one single client for local training. However, it re-
mains feasible to engage in supervised learning with labeled
clients and unsupervised learning with unlabeled clients. The
local models’ weights can then be aggregated into the global
model, taking into account the specific data type each client
contributes. The detailed training procedure is shown in Al-
gorithm 2 and the training objective can be formulated as

min
θ

Nl∑
i=1

wl
i

∑
(xi,yi)∈Dl

i

ℓs(xi, yi; θ) +

Nu∑
i=1

wu
i

∑
xi∈Du

i

ℓu(xi; θ).

Representative Methods
FedIRM [Liu et al., 2021a] enhances the consistency regu-
larization framework by introducing an inter-client relation
matching strategy. The proposed learning scheme fosters co-
herence in learning between labeled and unlabeled clients. It
ensures that the unlabeled clients mirror the class relation-
ships observed in labeled clients and preserves the discrimi-
native task knowledge.

Fed-Consist [Yang et al., 2021] also introduces a
consistency-based method, in which different augmentations
were applied to unlabeled images with their predictions simi-
larity maximized. However, its performance significantly de-
creases when the proportion of unlabeled clients increases.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Survey Track

8247



Representative
Methods

SSL
Techniques

Data
Heterogeneity

Data
Privacy

Communication
Efficiency Advantanges Disadvantages

FedIRM [Liu et al., 2021a] Consistency
regularization ✗ ✗ ✗

Knowledge
preservation

Failure with
imbalanced classes

Fed-Consist [Yang et al., 2021] Consistency
regularization ✗ ✗ ✗

Domain specific
for segmentation

Failure with
large number of
unlabeled clients

RSCFed [Liang et al., 2022] Consistency
regularization

Distance-reweighted
model aggregation. ✗ ✗

Consideration of
uneven reliability
in non-IID clients

Extra aggregation
overhead

FedSSL-DP [Fan et al., 2022] SSL GAN ✗
Differential

privacy ✗ No data leakage Unstable training

CBAFed [Li et al., 2023a] Pseudo-label Class balanced
adaptive thresholds ✗ ✗

Effective with
imbalanced classes

Extra
communication cost

UM-pFSSL [Shi et al., 2023] Pseudo-label Uncertainty
minimization ✗

Ranking update
protocol Personalization Extra local

training overhead

Table 2: Comparison of different FSSL methods for the label-at-partial-client case. ✗ denotes that the method does not focus on this issue.

This is due to the potential for the global model to become
overly influenced by the unlabeled data, which can skew
learning outcomes and degrade overall model performance.

RSCFed [Liang et al., 2022] addresses the uneven reli-
ability of non-IID local clients by moving beyond straight-
forward aggregation of local models. It introduces a novel
concept of updating the global model through the aggrega-
tion of multiple sub-consensus models. This is achieved by
randomly sub-sampling clients to form sub-consensus mod-
els and employing a distance-reweighted aggregation module
to integrate these models during each synchronization round.

FedSSL-DP [Fan et al., 2022] designs a mixed-data gen-
eration strategy to utilize both labeled and unlabeled clients
by establishing a unified data space without direct data ex-
change. Furthermore, the differential privacy (DP) scheme
can be integrated smoothly into the model, prohibiting exces-
sive access to the labeled data with theoretical guarantees.

CBAFed [Li et al., 2023a] rethinks the standard pseudo-
labeling methods used in FSSL. Recognizing the potential
imbalance in the training distribution of unlabeled data due to
the non-IID issue, CBAFed proposes class-balanced adaptive
thresholds. These thresholds are dynamically adjusted based
on the empirical distribution of all training data across local
clients, as observed in the previous communication round, to
accommodate the non-IID data distributions more effectively.

UM-pFSSL [Shi et al., 2023] investigates the personalized
FL model under the label-at-partial-client case. Unlabeled
clients struggle to obtain competent personalized models due
to insufficient knowledge of their local data distributions,
while labeled clients may dominate the collaborative training
and obtain superior performance. UM-pFSSL enables unla-
beled clients to assimilate knowledge from selected “helper”
clients, thereby acquiring reliable pseudo-labels guided by
an uncertainty metric. To reduce the communication cost,
a ranking update protocol is designed to select the suitable
helper clients as well.

4.3 Label-at-server Case
Unique Challenges and Generic Solution Framework
Unlike two previous cases where the server acts as the param-
eter server only, the server now has direct access to its own

Algorithm 3 Generic label-at-server FSSL framework
Input: Initialized model parameters θ = θ1

1: for communication round t = 1 to R do
2: Server trains the model θt in a supervised manner with Ds.
3: Randomly select a subset of clients Ct ⊆ {1, . . . , N}.
4: for each selected client i ∈ Ct in parallel do
5: Train a local model θti with Di and the initialized θt.
6: end for
7: Server aggregates {θti}i∈Ct and updates θt+1.
8: end for

data. The label-at-server case is quite common in real-world
applications. For instance, a healthcare system may involve
a central hub (“server”) with domain experts and a limited
number of labeled data, such as medical records, together
with many rural branches (“clients”) with large volumes of
unlabeled data without expert annotation.

The main challenge of this case lies in the lack of direct
supervision on the client side due to the disjoint distribution
of labeled and unlabeled data, and thus, no classic SSL meth-
ods can be directly applied to either the client or the server.
The clients now must rely on indirect supervision, such as the
pseudo-labels generated based on the server’s model, to learn
from their unlabeled data, making the learning process less
efficient and potentially less accurate. Therefore, the model
is trained in a supervised manner on the server before it is
distributed to the clients, as shown in Algorithm 3. The cor-
responding training objective is given as

min
θ

∑
(xi,yi)∈Ds

ℓs(xi, yi; θ) + λ
N∑
i=1

wi

∑
xi∈Di

ℓu(xi; θ).

Representative Methods
FedMix [Zhang et al., 2021a] designs parameter decompo-
sition strategies for disjointed learning of labeled and unla-
beled data. To alleviate the non-IID issue, FedMix proposes a
novel aggregation rule, which dynamically adjusts the weight
of each local model based on the client’s participation fre-
quency, thus balancing the influence of varying data distribu-
tions across clients.
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Representative
Methods

SSL
Techniques

Data
Heterogeneity

Data
Privacy

Communication
Efficiency Advantanges Disadvantages

FedMix [Zhang et al., 2021a] Consistency
regularization

Frequency-reweighted
model aggregation ✗

Parameter
decomposition

Robust and
stable Information leakage

GDST [Liu et al., 2021b] Self-training ✗ ✗ ✗
Easy to

implement
Failure with

non-IID setting

CRL-Grouping [Zhang et al., 2021b] Consistency
regularization

Grouping-based
model aggregation ✗ ✗

Easy to
implement

Failure with
distribution shift

FedIL [Yang et al., 2022] Consistency
regularization ✗ ✗

Group-based asyn-
chronous training

Provable
convergence Not scalable

SSFL [Diao et al., 2022] Pseudo-label ✗ ✗ Alternate training Communication-
efficient Information leakage

FedFAME [Malaviya et al., 2023] Contrastive
learning

Knowledge
distillation ✗ ✗

Data augmentation
free Information leakage

pFedKnow [Wang et al., 2023a] Pseudo-label Collaborative
distillation ✗ Network pruning Personalization Extra pre-training

overhead

Table 3: Comparison of different FSSL methods for the label-at-server case. ✗ denotes that the method does not focus on this issue.

GDST [Liu et al., 2021b] integrates global distillation and
self-training into local training within the FL framework,
jointly with server-side fine-tuning, to further stabilize and
enhance the learning process of the global model.

CRL-Grouping [Zhang et al., 2021b] combines consis-
tency regularization with group normalization (GN), reducing
gradient diversity and improving test accuracy. It employs a
grouping-based averaging technique to expedite convergence,
offering a substantial improvement in speed over FedAvg.

FedIL [Yang et al., 2022] enforces the consistency be-
tween the predictions made by clients and the server during
the training process, achieving a provable convergence guar-
antee. FedIL also introduces a group-based asynchronous
training algorithm in combination with a time-slot-based task
scheduling to allow more clients to participate in training si-
multaneously.

SSFL [Diao et al., 2022] resorts to an alternate training
scheme, which fine-tunes the aggregated global model with
labeled data and generates pseudo-labels only once upon re-
ceiving the global model from the server. Compared to the
existing solutions, which all train and aggregate server and
client models in parallel and generate pseudo-labels with the
training models for every batch of unlabeled samples, SSFL
is much more communication efficient.

FedFAME [Malaviya et al., 2023] offers a versatile frame-
work that eliminates the need for data augmentation in local
model training by utilizing contrastive learning. This feature
makes FedFAME particularly suitable for domains lacking
standard augmentation techniques, like text or graphs, pro-
viding a robust solution across diverse data types.

pFedKnow [Wang et al., 2023a] generates lightweight
personalized client models via neural network pruning tech-
niques to reduce communication costs. Moreover, it leverages
pretrained large models as a form of prior knowledge to guide
the aggregation of personalized client models and further en-
hance the learning efficiency.

4.4 Unlabel-at-server Case
Unique Challenges and Generic Solution Framework
In the unlabel-at-server case, the locations of labeled and
unlabeled data are swapped compared to the label-at-server
case, with the server now holding unlabeled data while clients

Algorithm 4 Generic unlabel-at-server FSSL framework
Input: Initialized model parameters θ = θ1

1: for communication round t = 1 to R do
2: Server trains model θt on Ds with pseudo-labels.
3: Randomly select a subset of clients Ct ⊆ {1, . . . , N}.
4: for each selected client i ∈ Ct in parallel do
5: Train a local model θti with Di and the initialized θt.
6: end for
7: Server aggregates {θti}i∈Ct , pseudo-labels and updates θt+1.
8: end for

possess labeled data. This setup is relevant in scenarios where
data privacy is a critical concern. For instance, a research in-
stitution (“server”) working with local hospitals (“clients”) on
a new drug development project illustrates this well. The hos-
pitals have access to labeled patient data for individuals diag-
nosed with rare conditions but are restricted from sharing this
sensitive information due to privacy regulations. Conversely,
the research institution has a wealth of unlabeled patient data
derived from public datasets and published research.

The main challenge is that the server cannot directly eval-
uate the quality of the local models during the server aggre-
gation since it lacks labeled data. It must employ indirect
measures to assess and incorporate client contributions effec-
tively. Hence, we train the model with the help of pseudo-
labels from the selected local models. The training procedure
is shown in Algorithm 4 with the training objective given as

min
θ

∑
xi∈Ds

ℓu(xi; θ) + λ
N∑
i=1

wi

∑
(xi,yi)∈Di

ℓs(xi, yi; θ).

Representative Methods
PATE-G [Papernot et al., 2017] collects local models from
clients to serve as teacher models, which then generate
pseudo-labels for the server’s unlabeled data based on their
collective predictions. These pseudo-labeled datasets are
leveraged to refine the global model. To ensure the privacy
of this knowledge transfer process, PATE-G utilizes the mo-
ments accountant technique, which facilitates the training of
student models under stringent privacy constraints, providing
meaningful privacy guarantees for the data involved.
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Representative
Methods

SSL
Techniques

Data
Heterogeneity

Data
Privacy

Communication
Efficiency Advantanges Disadvantages

PATE-G [Papernot et al., 2017] SSL GAN ✗
Differential

privacy ✗
Privacy

preservation
Failure with

non-IID

Ada-FedSemi [Wang et al., 2022] Pseudo-label ✗ ✗ Online learning Communication-
efficient

Failure with
heterogeneous clients

HeteroAda-FedSemi [Xu et al., 2023] Pseudo-label Layer-wise
global aggregation ✗ Online learning Effective with

heterogeneous clients
Extra local

training overhead

Table 4: Comparison of different FSSL methods for the unlabel-at-server case. ✗ denotes that the method does not focus on this issue.

Ada-FedSemi [Wang et al., 2022] selects partial local
models to produce pseudo-labels for the unlabeled data. A
multi-armed bandit (MAB) based online learning algorithm
is introduced to adaptively determine the participating frac-
tion and confidence threshold during training. HeteroAda-
FedSemi [Xu et al., 2023] extends Ada-FedSemi for the het-
erogeneous clients with diverse computation and communi-
cation resources. It customizes local models derived from
the same global model to match the capabilities of individual
clients by adjusting the model depths.

5 Future Directions
FSSL is an emerging research topic. Although significant
progresses have been made for FSSL, there still remain plenty
of research directions worthy of future explorations.

• FSSL for Vertically Partitioned Data: Investigating
FSSL for vertically partitioned data presents an intriguing
frontier with unique challenges. This new VFL setting,
where different clients hold different features or the labels
for the overlapping samples, requires the clients to com-
municate with the server for each iteration of local train-
ing (rather than after several epochs under the horizontal
FSSL setting), introducing extremely high communication
costs [Sun et al., 2023]. Therefore, the key research ques-
tion revolves around effectively and efficiently leveraging
the limited supervision information across diverse feature
spaces while solving extra issues related to data alignment,
feature heterogeneity, and privacy preservation across ver-
tical partitions [Kang et al., 2022]. An in-depth exploration
of vertical FSSL enables collaborative learning of feature-
partitioned partially-labeled data distributed across multi-
ple institutions in industrial applications.

• FSSL across Diverse Data Modalities: The current ex-
ploration of FSSL has predominantly focused on image
data, yet the potential of FSSL extends far beyond to in-
clude a variety of data modalities encountered in real-
world scenarios, such as text, graphs, and time series.
Specifically, the complex non-Euclidean structure of graph
data [Ma et al., 2023; Song et al., 2023c; Song et al., 2023a;
Song et al., 2023b; Zhang et al., 2023c; Song et al., 2024],
necessitates customized designs for effective SSL within an
FL framework at both the node level [Yao et al., 2023] and
graph level [Tao et al., 2022]. The adaptation of FSSL to
these diverse data types or even environments with multi-
modal clients is a critical area for future research. The main
challenge lies in handling the heterogeneity inherent to dif-
ferent data types.

• FSSL with Enhanced Model Robustness: There has been
an emerging concern about the robustness of FSSL, espe-
cially in some safety-critical healthcare applications like
medical diagnosis. The paramount goals of enhancing ro-
bustness against noisy labels and adversarial attacks hold
significant implications. Noisy labels can severely de-
grade FSSL model performance by introducing inaccura-
cies in training data [Kim et al., 2022], and adversarial at-
tacks pose a substantial risk, potentially manipulating FSSL
model predictions [Fu et al., 2022; Liu et al., 2022]. There-
fore, addressing these open problems is not merely a tech-
nical endeavor but a means to safeguard the trustworthiness
of FSSL applications in sensitive sectors where the stakes
involve human lives.

• FSSL under Additional Learning Settings: Recent stud-
ies have shifted from basic FSSL investigation to explor-
ing advanced FSSL with additional learning settings’ con-
straints. FedPU [Lin et al., 2022] focuses on positive and
unlabeled learning under the FSSL framework, where the
labeled data is only of the positive class. FedoSSL [Zhang
et al., 2023b] extends open-world SSL to an FL context
with unseen classes in test data. These developments push
the boundaries of FSSL and highlight the need for practical
FSSL models that can operate effectively under extra learn-
ing conditions encountered in real-world environments.

6 Conclusion
In conclusion, this survey underscores the burgeoning field
of FSSL, highlighting its potential to synergize the privacy-
preserving aspects of FL with the data efficiency of SSL.
Despite existing progress, considerable obstacles remain, un-
covering a wealth of opportunities for crafting diverse FSSL
models for practical applications.
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